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Assessment of  
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Abstract: The Marina area represents an official new gateway of entry to Egypt and the 
development of infrastructure is proceeding rapidly in this region. The objec-
tive of this research is to obtain building data by means of automated extraction 
from Pléiades satellite images. This is due to the need for efficient mapping 
and updating of geodatabases for urban planning and touristic development. 
It compares the performance of random forest algorithm to other classifiers 
like maximum likelihood, support vector machines, and backpropagation neu-
ral networks over the well-organized buildings which appeared in the satellite 
images. Images were subsequently classified into two classes: buildings and 
non-buildings. In addition, basic morphological operations such as opening 
and closing were used to enhance the smoothness and connectedness of the 
classified imagery.

 The overall accuracy for random forest, maximum likelihood, support vector 
machines, and backpropagation were 97%, 95%, 93% and 92% respectively. 
It was found that random forest was the best option, followed by maximum 
likelihood, while the least effective was the backpropagation neural network.

 The completeness and correctness of the detected buildings were evaluated. 
Experiments confirmed that the four classification methods can effectively and 
accurately detect 100% of buildings from very high-resolution images. It is 
encouraged to use machine learning algorithms for object detection and ex-
traction from very high-resolution images.
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1. Introduction

The precise identification of the ratio of existing buildings through extraction of 
building footprints from satellite images is a significant task in many applications 
like urban planning, hazard assessments and disaster risk management, and map 
updating of built-up areas.

Dahiya et al. in [1] used the split and merge technique to segment high resolu-
tion satellite images with fair contrast. Afterward, many filters were implemented to 
extract important features that were later transformed into a vector image. Finally, 
buildings were extracted from the area of the vector image. Liu and Prinet [2] utilized 
the discriminative feature-based technique, which described buildings effectively. 
Zhang et al. [3] created an approach for identifying buildings from high-resolution 
satellite images with usual contrast on a global scale. The developed methodology 
produced population density maps for the identification of buildings. Deep learning 
has also been applied to identify buildings from satellite images. Xu et al. [4] used 
deep learning to suggest a framework with guided filters for detecting buildings 
from satellite imageries. Aamir et al. [5] suggested a model can efficiently extract 
buildings from QuickBird images.

Pixel-based and object-based techniques are the main image classification tech-
niques in the literature.

Pixel-based classification methods neglect spatial background and only use 
spectral information, such as spectral vectors, at each pixel position. The Maximum 
Likelihood (MLH) algorithm is a popularly used classification approach. The MLH 
approach assumes the data is distributed normally for each class. A given pixel in 
the MLH procedure has a probability of belonging to a certain class. As a result, each 
pixel’s probability is determined, and each pixel is allocated to the highest probabil-
ity class.

Object-based classification methods categorize pixels based on their spatial 
characteristics as well as spectral values. It divides the image into objects that repre-
sent sets of pixels based on their spatial characteristics and other factors [6, 7].

Diverse learning-based algorithms have been implemented as an alternative to 
pixel-based and object-based approaches to get more precise and reliable built-up 
information from satellite images. Several researchers as [8–11] used SVM and RF 
for buildings extraction and detection, Yuan [12] employed machine learning algo-
rithms for counting buildings from satellite images.

Machine-learning (ML) techniques are non-parametric and data-driven because 
they do not make any assumptions about data distribution and learn the relationship 
between input and output data [13]. Random forest (RF), backpropagation (BP), and 
support vector machines (SVM) are the most commonly machine learning-based 
algorithms. Machine learning techniques are often used to extract meaningful in-
formation from high-resolution images. Hsu et al. [14] as well as Salah et al. [15] 
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used SVM to categorize land cover. Haykin [16] combined the findings of SVM, BP 
and RF for land cover classification from high-resolution imageries.

Previously, researchers have used a machine learning approach, for example 
Turker and Koc-San [17] integrated several algorithms to extract buildings auto-
matically from high-resolution images. After recognizing the buildings patches, the 
buildings borders are retrieved using Hough transformation and sequential edge 
detection and perceptual grouping.

Based on neural networks, Lari and Ebadi [18] proposed a technique for in-
creasing the degree of automation in extracting buildings features with varied roof-
ing from high-resolution multispectral satellite pictures in Middle Eastern nations.

Shoaib et al. [19] compared pixel and object-based classification techniques to 
extract buildings from WorldView-2 and GeoEye images. Then, based on shadow, 
context, form, and Digital Surface Model data, several refining processes are carried 
out. A comparison of the classification techniques revealed that the MLH Classifi-
er for pixel-based techniques and SVM for object-based technique were the most 
effective.

To categorize image data, Xu et al. [20] developed an enhanced RF approach 
that combined a novel feature weighting method with a tree selection method. They 
have conducted a number of studies with image databases. The results of the exper-
iments showed that the RF created using this strategy actually reduced generaliza-
tion error and enhanced the test accuracy classification performance.

Walton [21] used Cubist, RF, and support vector regression to estimate urban 
cover from Landsat-7 imagery utilizing a higher resolution cover map as training 
and reference data. The results showed that Cubist was the best when predicting 
impervious surface cover. Optimum implementations of RF and Support Vector Re-
gression might improve performance significantly.

Zhou and Chang [22] used ML to automate the classification of building struc-
tures. Several ML algorithms were evaluated, and the Gradient Boosted Decision 
Tree gave the best accuracy of 91.7%.

Numerous techniques have been developed using ML-based methods to clas-
sify built-up areas. However, existing results could be further improved. To date, 
a limited number of ML algorithms have been assessed in the existing literature. 
Therefore, the objectives of this research were to evaluate RF for their effectiveness 
and prospects for buildings extraction. A secondary objective was to assess the ac-
curacy of RF compared to widely used ML classification techniques as MLH, SVM 
and BP neural networks in order to derive the building footprints in a coastal city as 
a case study.

This research contributes to the existing theory in that it offers an initial effort 
toward the automated classification of buildings in the built environment domain. 
The novelty of this research is that our approach outperforms several peer methods 
for building footprints detection and extraction.
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2. Field of Study

Marina is located on the northern costal shore of Egypt (Fig. 1). It is the official 
new port of entry to Egypt. It is located between 30° 50′ 00″ N and 30° 50′ 59″ N and 
between 28° 57′ 44″ E and 28° 57′ 59″ E. We selected this study area because it is the 
new official gateway of entry to Egypt and the development of infrastructure is pro-
ceeding rapidly in this region.

The available data sources were color Pléiades images at 0.5-m resolution and 
digital large-scale maps 1: 2500.

Pléiades (Tab. 1) is a modern satellite that provides very high-resolution images. 
Pléiades-1A was put in place on December 17, 2011, and Pléiades-1B, on Decem-
ber 2, 2012. The two satellites are named after the Pléiades constellation [23].

Table 1. Pleiades-1A satellite sensor characteristics

Bands Spectral Resolution [m]

Blue 430–550 0.5

Green 490–610 0.5

Red 600–720 0.5

Near Infrared 750–950 0.5

Fig. 1. Location map of investigated area
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3. Method

The processing chain for building footprint extraction was as follows (Fig. 2 de-
picts the flowchart):

1. Radiometric correction of Pléiades was performed.
2. Rectification of Pléiades was performed using map control points.
3. The image has been classified using RF, then the performance of the RF al-

gorithm was compared to maximum likelihood, support vector machines, 
and BP.

4. Assessment of classification accuracy.
5. Application of morphological operations.
6. Edges detected using the Sobel edge detection algorithm and then converted 

into vectors.
7. Assessment of the performance of the completeness and correctness analyses.

RF MLH

Radiometric correction & Rectification
of Pléiades Image

ROI development

Classification of Pléiades Image

SVM
Backpropagation

Classification accuracy assessment

Apply morphological operations

Sobel edge detection

The edge image is then converted into vector

Quality Analysis

Completeness, correctness, and quality

Fig. 2. Flowchart of the methodology
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3.1. Geometric Correction of the Pléiades Images

Registration of the Pléiades images was performed using 2D second order. ER-
DAS-Imagine 2014 was utilized for the geometric correction. The CPs and ICPs that 
were used in the investigation were collected from reference digital large-scale maps 
1:2500 using AutoCad Map 2004. Sharp edges were selected to enable easy identifi-
cation on both maps and images. The accuracy of the extracted points was ±0.25 m. 
Figure 3 depicts the distribution of 10 well distributed control points CPs (yellow 
color) and 10 well distributed check points ICPs (green color) over the study area. 
The RMST error was 0.431 m.

Fig. 3. Distribution of 10 well distributed control points (yellow color)  
and 10 well distributed check points ICPs (green color)

3.2. Classification of Pléiades Images

In this research, four classifications (RF, MLH, BP neural network, and SVM) 
were performed. Region of Interests (ROIs) are collected and stored in a shapefile 
with two classes; buildings and non-buildings. Each record in the ROIs includes one 
target value (i.e. the class label) and several attributes. Using ROIs, these algorithms 
can train a classifier, and then use the relationships identified in the training process 
to classify the remaining pixels. The aim of the classification was to generate a model 
(based on the training data) that predicts the target values of the test data given only 
the test data attributes.

Maximum Likelihood Classification
The MLH is implemented in all software image processing packages [24]. It as-

sumes that data is distributed normally and calculates the probability of each pixel. 
Each pixel is assigned to the highest probability class [13].
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A disadvantage of MLH classification that it consumes considerable amounts of 
time and effort to prepare the training samples [25]. Also, MLH cannot effectively 
handle the mixed-pixel problem and it has a salt and pepper effect [26].

ENVI implements MLH classification as follows for each pixel:
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 i – class,
 x – n-dimensional data (where n is the number of bands),
 p(ω) – probability that class ωi occurs in the image and is assumed the same 
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 i∑  – determinant of the covariance matrix of the data in class  ωi,
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 – its inverse matrix,

 mi – mean vector.

Support Vector Machines

SVM is an efficient classification method [14]. SVM with Gaussian radial ba-
sis function was utilized with Gamma = 0.167 and penalty parameter = 100. The 
penalty parameter permits a certain degree of misclassification. Radial basis func-
tion (RBF) was used because it has been confirmed as effective in remote sensing 
applications [15, 16].

It is a non-parametric classifier that has the added benefit of being able to de-
crease empirical classification error while maximizing class separation using differ-
ent hyperplane transformations. This enables SVM to better handle of high-dimen-
sional data and classes with a multimodal feature space, often resulting in better 
results than other algorithms [27].

Also, its capacity to generalize well, even with small training data, is its biggest 
advantage over other classifiers [28, 29].

Other benefits include the fact that no earlier knowledge of the underlying data 
distribution is needed [13].

SVM has a number of drawbacks [30]:
 – It is difficult to read unless the features are interpretable.
 – It can be computationally expensive, so a good kernel function is required.
 – There is a lack of transparency in the outcomes [30].

Radial basis function (RBF) is given by:

 K(xi, xj) = exp(−g||xi − xj||2), g > 0,

where g is the gamma coefficient in the kernel.
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Backpropagation Neural Network Classification
A layered feed-forward classification technique was applied using standard BP. 

The system uses the input vector to generate its own output vector and compare it 
to the desired output vector. If there is no difference, no learning is required, or the 
weights are altered to decrease the difference [31].

The BP classifier provides a number of advantages over the maximum likeli-
hood classifier, including the fact that it does not require data to have a normal 
distribution. Moreover, BP requires fewer training samples [32].

Furthermore, a BP neural network can combine data from many sensor data 
types and auxiliary information, which a normal parametric classifier cannot [33]. 
It has a massively parallel structure and is relatively noise robust [34].

However, BP has significant weaknesses, including:
 – sluggish learning rates,
 – difficult convergence,
 – complex network topology, and ambiguous network meaning,

while its parameterization limits its use [34, 35].

Random Forest Classification
RF is a non-parametric technique that can treat complex, high-dimensional data 

more appropriately than conventional ones [36–38].
It is an ensemble method for image classification focusing on classification and 

regression analysis. The main parameter is the number of trees that can be set by the 
consumer [39].

RF is a model utilizing random grid search that fits a count of tree predictors on 
different sub-samples of the dataset [33]. RF is included in land cover classification 
utilizing different satellite sensor imagery [40–42]. To evaluate the model, cross-val-
idation was used to choose the parameters that generalized best the data, find the 
best number of trees, and the best number of maximum features. The main param-
eter is the number of trees, and the larger the better. The optimal number of trees in 
the decision tree of RF was studied. We tested the number of trees (i.e. 100 and 1000) 
in the RF classifier.

RF classification has a range of substantial advantages which help it yield a high 
degree of classification accuracy:

 – it requires fewer parameters,
 – minimal manual intervention,
 – it manages high-dimensional data, and
 – its capacity in determining significant variables and predicting the missed 

values [40, 42, 28].

It is well known that RF is characterized by notably computational efficiency.
The main obstacle of RF is that a wide number of trees might make it too slow 

and ineffective for real-time predictions.
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3.3. Criteria for Selecting a Classifier

The chosen classifier depends on a number of factors encompassing the accura-
cy of the classification, the quantum of human intervention, the required processing 
time and complexity of the classifier [25].

3.4. Quality Analysis

Quality tests such as quality, correctness, and completeness were used to verify 
the quality of the developed technique [43, 44].

The extracted candidate buildings segments were classified into the following 
groups [28]:

 – True Positive (TP): The buildings extracted are really buildings.
 – False Positive (FP): The buildings extracted are not buildings but are falsely 

extracted as buildings.
 – False Negative (FN): are non-buildings, they are not extracted and left as 

non-building areas.

After classification, the quality tests below were applied:

 – ≈

≈
+

Completeness Number of extracted buildings that are actually buildings =
Total number of extracted buildings in a scene

TP
TP FN

Completeness ∈ [0; 1]

 – Correctness ≈
+

TP
TP FP

Correctness ∈ [0; 1]

 – = ≈

≈
+ +

 Quality Number of extracted buildings that are actually buildings
Total number of extracted buildings in output
TP

TP FP FN
Quality ∈ [0; 1]

4. Findings and Discussion

A classification was executed and basic morphological operations such as 
opening and closing were applied to enhance the segmented image’s smoothness 
and connectedness. Figure 4 demonstrates the distinction between two urban 
mapping groups (urban and non-urban) for MLH, BP neural network, SVM, and 
RF respectively.
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The overall accuracy (Tab. 2) of RF, MLH, BP neural networks, SVM were 
found 97%, 95%, 92%, and 93% respectively.

Table 2. Assessment of classification using different approaches

Algorithm Overall accuracy [%] Kappa index

RF 97 0.95

MLH 95 0.93

BP neural network 92 0.89

SVM 93 0.92

The classification was performed using snap and ENVI 5.1 software. It was 
found that RF results obtained from Pléiades data have the highest accuracy of the 
four different classification methods (Tab. 2). This is because of the abovementioned 
advantages of RF.

a) b)

c) d)

Fig. 4. Classification using the different algorithms:  
a) MLH classification; b) BP neural network classification;  

c) SVM classification; d) RF classification.  
The red brick color represents buildings in a)–c) and purple color represents buildings in d)
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The optimal number of trees was investigated. Many trials were investigat-
ed and it is found that random forest’s efficiency improves as the number of trees 
grows. It was noted that, after growing 500 trees, RMSE value decreased very slowly 
and converged after 1000 trees [45]. Thus, the trees number was set to 1000.

In remotely sensed data classification, RF was examined at different spatial 
scales to estimate landuse/landcover from satellite imageries [21] and laser-scanning 
data with accuracy of 95% [46]. Decision tree, Convolutional Neural Network and 
RF were used in the automatic classification of buildings and RF had the higher ac-
curacy results by [10]. Tooke et al. [47] predicted building age from LiDAR-derived 
data successfully using RF. Guo et al. [46] used LIDAR data and aerial image data 
for urban mapping based on RF classification with a global accuracy of 95%. Bassier 
et al. [9] identified structural elements by processing the entire building of point 
cloud data using RF classification with a precision of 85%. He et al. [48] recognized 
building group patterns in topographic maps based on RF and graph partitioning 
with 90% of correctness.

The completeness and correctness of the detected buildings were evaluated. 
Adjacent buildings that were joined even though they were clearly separated were 
counted as one polygon. Otherwise, they were counted as individual buildings. By 
counting buildings in the classified map, it was found that TP = 26, FP = 0, FN = 0. 
Therefore, Completeness = 26/26 + 0 = 1, Correctness = 26/26 + 0 = 1, and Quali-
ty = 26/26 + 0 + 0 = 1.

5. Conclusions

This research addressed a binary classification problem and four machine learn-
ing algorithms were assessed. The overall accuracy for RF, MLH, SVM, and BP neu-
ral network were found 97%, 95%, 93% and 92% respectively. The results furnished 
a number of conclusions

 – First, the data labelling approach has an impact on the classification results.
 – Second, our results outperformed other peer methods.
 – Third, the completeness and correctness of our results for RF indicate that it 

can accurately classify 100% of buildings.
 – Fourth, it was found that the best two classifiers were RF and maximum like-

lihood.
 – Lastly, the RF classification approach was found very promising for the ex-

traction of building footprints. The computational efficiency of RF was excel-
lent, with only a few minutes of runtime necessary for training. The perfor-
mance of RF was enhanced by both increasing the number of trees and with 
more time.

Future work will include the comparison of numerous machine learning classi-
fications using high and very high-resolution images.
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