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Abstract: The aim of the paper is to discuss the idea of marking agricultural parcels in the 
control of direct payments to agriculture. The method of using remote sensing 
to monitor crops and mark them according to the idea of “traffic lights” is intro-
duced. Classification into a given “traffic lights” color gives clear information 
about the status of the parcel. The image classification was done on Sentinel-1 
and Sentinel-2 datasets by calculating the NDVI and SIGMA time series in the 
season from autumn 2016 to autumn 2017. Two approaches are presented: 
semi-automated and automated classifications. Semi-automated classification 
based on NDVI_index and SIGMA_index. Automated classification was per-
formed on NDVI by Spectral Angle Mapper method and on SIGMA by Ar-
tificial Neural Network (Multilayer Perceptron, MLP method). The following 
overall accuracy was obtained for NDVI_SAM: 70.35%, while for SIGMA_CNN 
it was: 62.01%. User accuracy (UA) values were adopted for traffic lights anal-
ysis, in machine learning: positive predictive value (PPV). The UA/PPV for 
rapeseed were in NDVI_index method: 88.1% (6,986 plots), NDVI_SAM: 85.0% 
(199 plots), SIGMA_index: 61.3% (4,165 plots) and in SIGMA_CNN: 88.9% 
(2,035 plots). In order to present the idea of “traffic lights”, a website was pre-
pared using data from the NDVI_index method, which is a trade-off between 
the number of plots and UA/PPV accuracy.
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1. Introduction

The Integrated Administration and Control System (IACS) [1] is an information 
system for the management of payments to farmers in European Union countries 
under the principle of share management. Support for farmers comes from the Eu-
ropean agricultural guarantee fund (EAGF). The main aims of IACS in the farm 
context are:

 – to carry out transactions correctly,
 – to recover unduly paid amounts,
 – to support farmers in making correct applications.

It is also important to manage and control the support in a standardized way 
throughout the EU. National administrations provide pre-established information, 
check if farmers meet the conditions for income support, and update applications for 
the following year. To meet these goals, IACS consists of digital databases, such as [1]:

 – Land Parcel Identification System (LPIS) – for the identification of plots in 
EU countries,

 – Geospatial Aid Application (GSAA) – for farmers to graphically indicate the 
agricultural area for which they are applying,

 – an integrated control system based on computational cross checks and phys-
ical on-farm controls.

1.1. IACS in Poland
The organization which implements IACS in Poland is the Agency for Restruc-

turing and Modernization of Agriculture (ARMA) (in Polish: Agencja Restruktu-
ryzacji i Modernizacji Rolnej). ARMA began the realization of the IACS goals in 
June 2001, and is responsible for [2]:

 – a register of animals kept for farming purposes,
 – a register of direct payments,
 – documentation referring to the register of farms and to the subsidies granted 

and paid,
 – documentation referring to controls and regulations conducted by the IACS.

ARMA is also responsible for keeping and updating the LPIS in Poland. This 
system is based on plans and cadastral documents, cartographic materials, geo-
graphic information system (GIS) and aerial or spatial imagery.

IACS in Poland consists of the non-IT part, created by ARMA, and an IT part 
created by the Asseco Poland company. Its main aim is to manage and control of the 
use of European Union funds allocated to farmers. The system prevents the occur-
rence of irregularities and abuses due to the use of advanced recoding and control 
mechanisms. The controls are carried out to assess their compliance with the stan-
dards: automatic controls, substantive correctness as well as consistency of the study 
and visual controls [3].
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1.2. Analysis of the Problems. 
The Concept of a “Monitoring Approach”  
and the Idea of “Traffic Lights”

Three documents prepared by Joint Research Center (JRC) [4–6] describe the 
concept of checks by monitoring (CbM) substituting the current solution (on the 
spot checks) which is time consuming and required a lot of field visits. The aim of 
the ‘monitoring approach’ is to simplify, reduce the burden of controls and perform 
controls remotely which can be applied systematically. The idea needs to be devel-
oped for a specific area, customized to local requirements by adopting newly avail-
able technology such as cloud processing and machine learning (ML) algorithms. 
Examples of the application of ML methods in crop recognition can be found in the 
publications [7–12].

A working definition of monitoring was proposed by JRC and specified by the 
Commission Implementing Regulation (EU) 2018/746 amending Implementing Reg-
ulation (EU) No 809/2014 as [5]:

“Procedure of regular and systematic observation, tracking and assessment of all eligibility criteria, 
commitments and other obligations which can be monitored by Copernicus Sentinels satellite data 
or other data with at least equivalent value, over a period of time that allows to conclude on the 
eligibility of the aid or support requested” with, “where necessary, and in order to conclude on the 
eligibility of aid or support requested, appropriate follow-up activities”.

The data sources offered by ESA Sentinel-1 (S-1 radar) and Sentinel-2 (S-2 opti-
cal) satellites provide images across the territory of European Union with the nom-
inal revisit every 5 days for S-2 and every 6 days for S-1. Sentinel images can be en-
hanced with additional imagery like high resolution or hyperspectral data and with 
data sources which is the evidence from farmers as geo-tagged images.

One of the important aspects of the project is assessing eligibility conditions met 
by declared agricultural parcels. The assessment is carried out in several stages [6]:

 – The declared and actual parcels areas correspond.
 – The monitored land should be compliant with the measure associated with 

the declared agriculture parcel requires.
 – The evidence of an incompatibility that impacts payment.
 – The term of conclusion on the payment to the holding can be made when 

a sufficient area has been confirmed.
 – Noncompliance will be warned about early.
 – Monitoring after payment is continued to screen any infringements and ob-

ligations to the scheme.

The farmer’s application form as well as external data such as the time series 
data from S-1 and S-2 are needed to assess if the declaration of what has been plant-
ed in the field and how it behaves is compatible with the truth on the ground. The 
assessment is based on a reductive approach. From the beginning of the application 
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year, information about the land is only gathered. Then, when the declaration clearly 
states which conditions need to be monitored and when monitored sources become 
available, parcels should be assigned using any logic code with respect to a particu-
lar scheme. The proposed coding in based on assigning colors to each plot depend-
ing on the conditions that are met and has been called “traffic lights”. “Flashing 
(blinking) lights” suggest that additional information or follow-up action is needed. 
The meaning of each color is as follows [6]:

 – Black (no lights) – there is no actual declaration available, but the parcel is 
considered because it was declared in previous years. In many cases, older 
information can be relevant for a current declaration.

 – White – the actual declaration is available, but the assessment is not yet com-
plete.

 – Flashing (blinking) yellow/ yellow – the parcel is assessed and probably the 
declared scheme/support measure is not in accordance with the require-
ments due to the absence of farmer action (warning alerts should be sent to 
the farmer).

 – Flashing (blinking) blue – the judgment of an expert is required because the 
parcel has been assessed and probably the declared scheme/support measure 
is not in accordance with the requirements. To complement the monitoring, 
additional information is required.

 – Yellow – the parcel has been assessed but the declared scheme/support mea-
sure cannot be confirmed or rejected because of insufficient evidence.

 – Green – the parcel has been assessed and confirmed as compliant with the 
conditions of the declared scheme/support measure.

 – Red – parcel has been assessed and confirmed as non-compliant with the 
conditions of the declared scheme/support measure.

The first two lights are meant to signal which parcels will be considered in 
the decision process. The next two flashing lights suggest that the process is on-
going in the case of the inconclusive yellow light cases. The last three represent 
a parcel’s state. It can be observed that green, red, yellow and flashing yellow 
lights correspond to work that is focused on an automation process without hu-
man control, while the flashing blue light needs human expert support in order 
to proceed.

The process of assessing “traffic lights” assumes that the parcel is monitored 
until it is possible to make a decision for the application year based on the mark-
ers. The decision is made when evidence for eligibility or ineligibility is observed. 
There is also uncertainty when observation or evidence are inconclusive or when 
the observation is delayed. The conclusive evidence depends on specific scheme 
and application. For example, for BPS (basic payment scheme) or EFA (ecolog-
ical focus area) are considered otherwise, and different information are needed 
to evidence.



An Application of the “Traffic Lights” Idea to Crop Control... 133

The general workflow can be as follow [6], and the more detailed one is shown 
in Figure 1 [5]:

1. The application made by the farmer determines the area of interest.
2. The parcel is assigned a green light if the required evidence is detected.
3. The parcel is assigned a red light if the conclusive counterevidence is detected.
4. The parcel is assigned a blinking yellow light if inconclusive counterevi-

dence is detected. It may cause a request for additional information from 
the farmer. If it is sufficient, the light is reassigned as green but if it is not 
the light is reassigned as blinking blue and probably need more field data is 
required. The result of this activity should change the light to green or red.

5. The parcels that have not been assigned as red or blinking yellow are as-
signed as yellow and are treated as green lights.

Fig. 1. The detailed workflow for how parcels could be assigned in “traffic lights” proposed by JRC
Source: [5]



134 B. Hejmanowska, M. Twardowski, A. Żądło

Respectively, the evidence is justified based on three types of rules: compliance 
rules which indicate a compatibility between specific parcel and requirements and give 
a green light, noncompliance rules which indicate a contradiction between declaration 
and monitored data and give a red light, and the final validity rules which support the 
automatic process. General examples for validity rules could be observation changeabil-
ity within a parcel which has ambiguities or observation of ploughing in a parcel that 
can cause changes to a scenario [5]. The rules are defined in general so paying agencies 
making a decision should choose appropriate criteria especially based on markers.

2. Material and Methods

2.1. Study Area

The recommendations of the area and shapes of parcels that can be monitored 
using Sentinel satellites was worked out by JRC [6]: the minimum size of parcel 
should be 0.5 ha and the monitoring will be done in areas where about 90% of the 
agricultural area is covered by agricultural parcels above the critical size.

Poland is spatially diverse in terms of its crop structure. Farms in northern Po-
land are typically remnants of former state farms and large parcels predominate. In 
southern Poland, the structure of crops is very fragmented and dominated by small 
plots often with an elongated shape.

The recommendation can be met in municipalities in northern Poland, while 
municipalities in the south do not even meet these requirements approximately.

The test area was selected in coordination with ARMA for 2 projects in 2018 
and 2019 [13–15]. Initially, the commune of Brzeżno located in the north-western 
part of Poland was chosen as a representative test area. Due to the impossibility of 
obtaining unclouded time series within the whole Brzeżno commune, the search was 
extended (Fig. 2 – plots in green) and a different test area was selected for the S-2 
and S-1 analyses (Fig. 2 – plots in gray and yellow respectively).

2.2. Datasets

There were two types of datasets which are collected:
1) vector – a shapefile with the polygons defining the crops declared by the 

farmers,
2) raster – Sentinel-1 (S-1) and Sentinel-2 (S-2) time series.

Vector data containing information about the declaration was kindly provided 
by ARMA and was pre-filtered to remove parcels smaller than 0.3 ha.

Sentinel images were downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/). S-1 mission use C-band Synthetic Aperture Radar 
which provide images regardless of weather and light conditions. Data are avail-
able on three processing level: Level-0 contain raw data, Level-1 produced as Single 

https://scihub.copernicus.eu/
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Look Complex (SLC) and Ground Range Detected (GRD) and Level-2 contain com-
ponents for Ocean Swell Spectra (OSW). Level-1 GRD was used in our research. 
Sentinel-2 provides multispectral data in the visible spectrum (VIS), red edge  (RE), 
NIR and SWIR. The spatial resolution is 10 m for VIS and NIR, 20 m and 60 m for 
infrared bands and red-edge.

Fig. 2. Test area: all parcels in green obtained from ARMA,  
parcels selected in Sentinel-1 time series analysis in yellow (16,494),  

parcels selected in Sentinel-2 time series analysis in gray (27,803)

The data covered the season from autumn 2016 to the autumn of 2017.
9 images of S-1 were chosen for the Brzeżno area (for days: 22.03.2017, 03.04.2017, 

21.05.2017, 05.06.2017, 08.06.2017, 23.07.2017, 27.08.2017, 24.09.2017, 26.09.2017) and 
10 images of S-2 (for days: 03.09.2016, 12.11.2016, 12.12.2016, 12.03.2017, 22.03.2017, 
10.04.2017, 21.05.2017, 29.08.2017, 11.09.2017, 28.09.2017).

Cloud cover is not an obstacle in radar registration. Therefore, one continu-
ous test area in the center was chosen for analysis (16,494 plots, Fig. 2 – in yellow). 
For 4,165 parcels, the plant is given, for the remaining 12,329 parcels, the single area 
payment (SAPS) declared.
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Acquisition of cloud-free S-2 time series in temperate climates is difficult, espe-
cially for large areas. It is not possible to acquire S-2 time series even for a single com-
mune. Thus, a few fragments of unclouded areas on all 10 images were selected for 
testing. In these areas 27,803 plots were declared (Fig. 2 – in grey). For 6,986 parcels, 
the plant is given, for the remaining 20,817 parcels, the single area payment (SAPS) 
declared.

NDVI [16] was calculated from S-2 images, and SIGMA backscattering coeffi-
cient [17, 18] from S-1 images. For each declared plot selected for analysis, the aver-
age value of the NDVI/SIGMA of all pixels within a given plot was calculated from 
the NDVI/SIGMA image. The mean NDVI/SIGMA value of the successive dates of 
the time series was assigned to the plot as new attributes. Thus, each plot was as-
signed 10/9 new attributes.

Fig. 3. Declared parcels with crops, selected parcels (in yellow)  
with “id” concerning NDVI layer

An enlarged part of the study area is shown in Figure 3. 8 sample plots were se-
lected (Fig. 3 – in yellow, with id and plant label). Table 1 shows the 9 new attributes 
(SIGMA time series) and Table 2 (NDVI time series) for each selected parcel. Charts 
in Figures 4 and 5 present the time series of SIGMA/NDVI for each plant. The course 
of the curves makes it possible to define indicators based on which the classification 
can be done in order to separate the plots covered by particular crops.
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Table 1. Examples of SIGMA values as attributes of parcels

Crop/id/
data Oat/3842 Oat/767 Winter 

rape/7892
Winter 

rape/3844
Winter 

rye/11163
Winter 

rye/16308
Narrow-leaf 
lupin/5633 Fallow/3449

22.03.2017 −15.986 −19.365 −14.681 −16.158 −15.616 −15.617 −16.447 −16.71

03.04.2017 −18.72 −17.022 −15.915 −15.54 −19.064 −17.483 −16.117 −16.394

21.05.2017 −18.607 −17.07 −12.142 −10.611 −18.456 −18.284 −15.425 −15.197

05.06.2017 −19.001 −16.567 −10.069 −10.076 −18.521 −17.652 −15.968 −14.526

08.06.2017 −17.383 −17.085 −12.041 −11.446 −12.901 −16.01 −15.493 −15.037

23.07.2017 −17.066 −15.874 −16.836 −17.781 −19.626 −15.635 −15.221 −15.372

27.08.2017 −17.714 −17.491 −20.565 −19.207 −17.346 −18.173 −17.063 −16.151

24.09.2017 −20.146 −19.402 −15.578 −15.8241 −20.483 −19.937 −18.801 −16.785

26.09.2017 −16.192 −15.347 −18.837 −17.738 −15.1996 −15.452 −16.412 −15.72

Area [m2] 36,358.34 36,136.73 71,813.27 57,008.71 19,670.64 20,950.04 32,039.14 81,920.31
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Fig. 4. SIGMA time series charts of selected parcels  
(rape_index_S1=SIGMA 05.06.2017 ≥ −13.7)
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Table 2. Examples of NDVI values as attributes of parcels

Crop/id/
data Oat/82 Oat/23 Winter 

rape/154
Winter 
rape/84

Winter 
rye/205

Winter 
rye/293

Narrow-
leaf 

lupin/123
Fallow/65

03.09.2016 0.297 0.329 0.219 0.208 0.244 0.257 0.309 0.394

12.11.2016 0.180 0.328 0.500 0.498 0.131 0.377 0.374 0.305

12.12.2016 0.144 0.274 0.425 0.422 0.121 0.383 0.320 0.249

12.03.2017 0.157 0.233 0.263 0.258 0.144 0.345 0.258 0.190

22.03.2017 0.166 0.164 0.327 0.321 0.165 0.351 0.279 0.217

10.04.2017 0.204 0.186 0.445 0.445 0.239 0.410 0.308 0.257

21.05.2017 0.555 0.408 0.485 0.487 0.632 0.534 0.311 0.479

29.08.2017 0.250 0.347 0.234 0.191 0.178 0.307 0.384 0.478

11.09.2017 0.213 0.320 0.176 0.181 0.218 0.198 0.293 0.453

28.09.2017 0.277 0.317 0.207 0.202 0.321 0.370 0.330 0.447

Area [m2] 36,358.34 36,136.73 71,813.27 57,008.71 19,670.64 20,950.04 32,039.14 81,920.31

Fig. 5. NDVI time series charts of selected parcels 
(rape_index_S2=NDVI12112016-NDVI3092016)
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2.3. Classification Methods

Crop recognition using S-1 and S-2 data was performed using the object-ori-
ented classification method by two methods: semi-automatic, based on time series 
charts, and automatically, using NDVI and SIGMA values of parcel attributes.

2.4. Semi-automatic Classification

For semi-automatic classification of NDVI/SIGMA datasets, the variability curves 
over the time were calculated for each crop (as in Figs. 3, 4). By analyzing the charts, it 
is possible to see the characteristic moments of the phenological development of the 
crop and agrotechnical procedures performed. Peaks and rapid changes of the NDVI/
SIGMA curve are the basis to define classification criteria which can help to separate 
one crop from others, especially when the values are much different in specific time.

Let us analyze the curves for winter rape in (Figs. 4, 5). In Figure 4, the max-
imum SIGMA value can be observed between 21.05.2017 and 06.06.2017. This al-
lows the use of simple thresholding to separate rape from other crops (in our case 
rape_index_S_1=SIGMA 05.06.2017 ≥ −13.7). In the NDVI plot (Fig. 5) one can 
notice the unique course of the rapeseed curve and the large increase in NDVI 
values from 0.2 to 0.5 between 03.09.2016 and 12.11.2016. Therefore, a formula 
can be given for: rape_index_S2=NDVI12112016-NDVI3092016, with a threshold 
(rape_index > 0.3) to separate the plots covered by rape.

In the second approach, automatic classification of the SIGMA and NDVI time 
series was performed. Classifications were not made on individual plants but rather 
groups of plants. Crop structure for the test area: S-1, SIGMA and S-2, NDVI are pre-
sented in Figure 6. Five classes have been selected for automatic classification, taking 
into account the number of declarations for a given crop (crops with low numbers 
have been removed): grass, winter rye, potato, rapeseed, other cereals, maize.

Crops test area S-2 NDVI SAM

grass

w.rye

potato

rapeseed
other cereals

Crops test area S-1 SIGMA

grass

w.rye

potato

rapeseed

other cereals

Fig. 6. Crop structure in the test area

SIGMA and NDVI were developed separately, so the test areas are different. 
Finally, a set of 2,904 plots was selected for SIGMA time series classification, which 
was divided into two independent subsets, taking: 30% as training and 70% as test. 
In the NDVI classification, on the other hand, a collection of 662 plots was adopted: 
70% training and 30% testing.
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2.5. Automatic Classification

Automatic classification of SIGMA time series was performed by means of the 
neural network (Multilayer Perceptron) method with 2 hidden layers in NeuroLab 
Python library [19]. Different scaling methods were selected during data prepara-
tion: maxscale, normalize, scale, and stdscale.

Automatic NDVI time series classification was performed by the algorithm ad-
opted from image classification, namely the Spectral Angle Mapper (SAM). In this 
method, each plot is represented by a vector. The attribute values (NDVIs) create 
the coordinates of the vector. Thus, each plot has 10 coordinates (10 NDVI values, as 
in Table 2). Reference vectors were determined for each class from the training set, 
based on the average values of the coordinates of all vectors of a given crop. Then the 
angle between each of the reference vectors and the vector of each plot was calculat-
ed. The plot was assigned to the class for which the angle was the smallest.

2.6. Accuracy Assessment

The accuracy assessment was performed for each method by the calculation of 
the full confusion matrix and binary confusion matrix, also called the error matrix. 
In the full confusion matrix, classification results are compared to the true on the 
ground information. The binary confusion matrix is used in machine learning ap-
proach and classifies the results into four classes:

1) TP true positive – means that the parcel was classified as a declared crop,
2) TN true negative – means that the parcel was not classified as a declared 

crop and the declaration is different to the classification result,
3) FP false positive – means that the parcel was classified as a given crop, but 

the declaration is different,
4) FN false negative – means that parcel was not classified as a given crop but 

declared as that crop.

The most important parameter was calculated and shown in Table 3.

Table 3. Accuracy assessment parameters

Name Description Formula

Producer accuracy (PA) / 
sensitivity / true positive 
rate (TPR)

Number of correctly classified 
parcels in a given group of parcels 
declared to the number of all 
analyzed parcels in this group

Specificity / true negative 
rate (TNR)

Number of parcels correctly 
classified as not the given group to 
the number of all negative cases

TP
TP FN+

TN
TN FP+
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User accuracy (UA) 
/ precision / positive 
predictive value (PPV)

Number of correctly classified 
parcels in a given group for all 
parcels classified as a given group

Accuracy (ACC)
Number of correctly classified 
parcels as and as not a given group 
to the number of all parcels analyzed

F1 score The measure of a test accuracy

Overall accuracy (OA) 
/ percent of correct 
precision

Number of correctly classified 
parcels to the number of all parcels 
analyzed

Source: [20, 21]

2.7. Classification Result vs. “Traffic Lights”

As a result of automatic classification, we obtained information about the class 
to which the plot has been classified and the values of the accuracy metrics as in 
Table 3. Overall accuracy and F1 score relate to classification accuracy in general. 
The other metrics refer to individual classes (crops/crop groups). According to the 
diagram in Figure 1, as a result of automatic classification, plots should be assigned 
one of three lights: green, red or yellow. A green light means that the classification 
result coincides with the declared crop, if it is different than a red light is “flashing”. 
In cases of doubt, a yellow light is used and the procedure continues as shown in 
Figure 1: semi-automatic procedure and expert judgment. Note that the results of 
the automatic classification confirming or negating the correctness of the declaration 
are not processed further. However, it should be taken into account that no classifi-
cation is perfect and there is no 100% certainty that a decision is correct, whether it 
is green or red.

In our study, we focused only on the first step of scheme Figure 1, and not 
in a complete way. Automatic and semi-automatic classification was performed 
(semi-automatic does not mean the second stage shown in this diagram). The 
outcome of the classification either confirmed the declaration or it did not. If the 
declaration is confirmed, a green light can be switched on, otherwise a red light is 
illuminated. In both cases, there is a risk of error. A farmer could be given the ben-
efit of the doubt and assume that running a green light is less risky than running 
a red light. Therefore, we decided that a red light is not automatically switched on 
for FP and FN. Further action in the FP and FN cases may depend on the values of 
the accuracy metrics and classification reliability. For example, if we have high user 
accuracy, i.e., a small commission error, we can light a red light for FP with high 

TP
TP FP+

TP TN
TP TN FP FN

+
+ + +

2
2

TP
TP FP FN

⋅
⋅ + +

1

1
)(

n

ii
n

i i i ii

TP

TP TN FP FN
=

=
+ + +

∑
∑

Table 3. cont.
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confidence.	In	the	case	of	lower	producer	accuracy	and	a higher	omission	error,	we	
would	need	to	verify	the	FNs	to	avoid	incorrectly	putting	the	red	light	on	for	them.	
Therefore,	even	at	the	first	stage,	we	decided	to	assign	the	color	blue	in	case	where	
an	expert	decision	is	need	(for	example	a color	composition	analysis).

3. Results and Discussion

This	subsection	presents	 the	results	of	NDVI	and	SIGMA	time	series	classifi-
cation	for	crop	control	using	the	semi-automatic	method,	SAM	method	and	neural	
networks.	Finally,	classification	results	are	presented	in	the	form	of	a “traffic	lights”	
map	for	rapeseed.

3.1. Classification Results – Semi-automatic Method

The	result	of	semi-automatic	classification	based	on	NDVI	can	be	analyzed	in	Fig-
ure	7	(p.	147)		and	accuracy	analysis	of	SIGMA	and	NDVI	in	Table	4,	where	there	are:

 – TP,	TN,	FP,	FN,
 – ML	metrics:	accuracy	(ACC),	specificity	(TNR),
 – metrics	in	traditional	approach:

• UA(PPV)	together	with	commission	error	(CE)/false	discovery	rate	(FDR)	–	
percentage	of	 the	number	of	parcels	declared	as	another	crop	then	rape	
falsely	classified	as	rape,

• PA(TPR)	 together	with	 omission	 error	 (OE)/false	 negative	 rate	 (FNR)	 –	
percentage	of	the	number	of	parcels	declared	as	rape	falsely	classified	in	
another	class.

Table 4. Reliability	of	the	classification	using	the	semi-automated	method	for	rape

Classification	
method TP TN FP FN ACC TNR UA(PPV) CE(FDR) PA(TPR) OE(FNR)

SIGMA_index 152 4,143 96 22 0.973 0.977 0.613 0.387 0.874 0.126

NDVI_index 252 6,319 34 381 0.941 0.995 0.881 0.119 0.398 0.602

In	 the	 case	of	binary	 classification	of	originally	multiple	 classes,	 it	makes	no	
sense	to	give	the	values	of	accuracy	(ACC)	and	specificity	(TNR),	often	used	in	ma-
chine	learning,	because	they	always	reach	values	above	90–95%	(in	our	case	for	rape-
seed:	97.3%	and	94.1%	for	SIGMA	and	NDVI	respectively).	Also,	it	makes	no	sense	
to	give	OA,	and	especially	not	to	confuse	it	with	accuracy.

For	crop	inspection,	metrics	of	particular	interest	are	over-	and	under-estima-
tion	 error	 (commission	 and	 omission	 error)	 and	 the	 corresponding	 user/produc-
er	accuracy	(in	machine	learning:		PPV	and	TPR).	Table	4	shows	these	metrics	for	
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rapeseed. Commission error presents the percentage of the number of parcels de-
clared as a crop other than rape or falsely classified as rape.

The SIGMA_index method had a significant commission error: 38.7% and 
a small omission error: 12.6%.

In the NDVI_index method, the reverse was observed: the commission error 
was small: 11.9%, while the omission error was very large: 60.2%.

This means that the reliability of the classification of oilseed rape based on SIG-
MA was much higher than using NDVI.

3.2. Classification Results – Automatic Methods

The neural network classification made on SIGMA dataset gives different results 
depending on the method of data standardization. The maxscale, normalize, scale, and 
stdscale were used and the scale gives the best results. Tables 5 and 6 present binary 
classification matrices for classification of SIGMA values by neural network method 
for both training and test dataset. Note the high mean values of validation ACC 
and TNR, which are above 99%, on the test data are also high above 80% except for 
cereals (ACC = 71.35%, TNR = 77.39%). In general, all metrics for the validation pro-
cess average above 95%.

For the test dataset, the producer accuracy (PA/TPR) as well as the user ac-
curacy (UA/PPV) and F1 are low and on average are respectively: 53.15%, 51.92% 
and 47.76%. Eventually it can be given the overall accuracy for validation is 98.50% 
and for test 62.01%. When analyzing the metrics for individual crops, only grass and 
rapeseed have acceptable values (F1 82.27% and 83.84% respectively). For potatoes, 
the classification result is completely unacceptable (TPR, PPV and F1 are 0). Despite 
this fact, the ML metrics of accuracy (ACC) and specificity (TNR) are above 95% 
(97.94% and 99.10% respectively).

Table 5. Binary confusion matrix for SIGMA classification – training dataset (OA = 98.50%)

Crop TP TN FP FN ACC TPR TNR PPV F1

grass 341 517 7 4 0.9873 0.9884 0.9866 0.9799 0.9841

w_rye 134 732 0 3 0.9965 0.9781 1.0000 1.0000 0.9889

potato 10 856 1 2 0.9965 0.8333 0.9988 0.9091 0.8696

rape 41 827 1 0 0.9988 1.0000 0.9988 0.9762 0.9880

other cereals 304 558 4 3 0.9919 0.9902 0.9929 0.9870 0.9886

maize 26 842 0 1 0.9988 0.9630 1.0000 1.0000 0.9811

Mean 143 7223 2 2 0.9950 0.9588 0.9970 0.9754 0.9667
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Table 6. Binary confusion matrix for SIGMA classification – test dataset (OA = 62.01%)

Crop TP TN FP FN ACC TPR TNR PPV F1

grass 608 1165 95 167 0.8713 0.7845 0.8746 0.8649 0.8227

w_rye 110 1623 59 243 0.8516 0.3116 0.8698 0.6509 0.4215

potato 0 1993 24 18 0.9794 0.0000 0.9910 0.0000 0.0000

rape 96 1902 12 25 0.9818 0.7934 0.9870 0.8889 0.8384

other cereals 408 1044 278 305 0.7135 0.5722 0.7739 0.5948 0.5833

maize 40 1675 305 15 0.8428 0.7273 0.9911 0.1159 0.2000

Mean 210 1567 129 129 0.8730 0.5315 0.9240 0.5192 0.4776

Tables 7 and 8 present binary confusion matrices for the classification of NDVI 
values by means of the SAM method for both the training and test dataset. In this 
case, one can see a smaller discrepancy between the metrics calculated from the train-
ing and test data. The ACC and TNR values are high for both datasets (above 90%), 
but not as high as for neural networks, where they were above 99%.

Table 7. Binary confusion matrix for NDVI classification – training dataset (OA = 72.79%)

Crop TP TN FP FN ACC TPR TNR PPV F1

grass 103 303 37 20 0.8769 0.8374 0.8912 0.7357 0.7833

w_rye 9 421 14 19 0.9287 0.3214 0.9678 0.3913 0.3529

potato 5 425 13 20 0.9287 0.2000 0.9703 0.2778 0.2326

rape 55 389 15 4 0.9590 0.9322 0.9629 0.7857 0.8527

other cereals 135 224 43 61 0.7754 0.6888 0.8390 0.7584 0.7219

maize 30 427 4 2 0.9870 0.9375 0.9907 0.8824 0.9091

Mean 56 364 21 21 0.9093 0.6529 0.9370 0.6385 0.6421
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Table 8. Binary confusion matrix for NDVI classification – test dataset (OA = 70.35%)

Crop TP TN FP FN ACC TPR TNR PPV F1

grass 29 142 19 9 0.8593 0.7632 0.8820 0.6042 0.6744

w_rye 3 174 9 13 0.8894 0.1875 0.9508 0.2500 0.2143

potato 3 187 3 6 0.9548 0.3333 0.9842 0.5000 0.4000

rape 34 158 6 1 0.9648 0.9714 0.9634 0.8500 0.9067

other cereals 58 93 19 29 0.7588 0.6667 0.8304 0.7532 0.7073

maize 13 182 3 1 0.9799 0.9286 0.9838 0.8125 0.8667

Mean 23 156 10 10 0.9012 0.6418 0.9407 0.6283 0.6282

For the test dataset, the producer accuracy (PA/TPR) as well as the user ac-
curacy (UA/PPV) and F1 are low and on average are respectively: 65.29%, 63.85% 
and 64.21%. Ultimately, the overall accuracy for the training dataset can be given 
as 72.79% while the test dataset is 70.35%. When analyzing the metrics for individual 
crops, only winter rye and potato have unacceptable values (F1 21.43 and 40.00% 
respectively).

The automatic classification score of both SIGMA and NDVI should be con-
sidered as poor based on OA (62.01% and 70.35%, respectively). However, it is 
important to note the varying accuracy in the classification of individual crops. In 
both classifications the lowest accuracy was obtained for winter rye and potatoes. 
In both cases, the explanation could be the small number of declarations: potatoes. 
In contrast, winter rye was misclassified for SIGMA despite not being a margin-
al class. Overall NDVI classification scored better than SIGMA except for winter 
rye and potatoes, and for maize and rape F1 was satisfactory (86.67% and 90.67% 
respectively). Even the accuracies for grass and other cereals were relatively high 
(67.44% and 70.73% respectively).

3.3. Results of Using “Traffic Lights”: the Example of Rapeseed

We used the idea of “traffic lights” to illustrate our classification results. The 
best classified crop was selected: rapeseed. Table 9 compares the metrics obtained 
by the four methods for rapeseed. The four cases discussed differ in area, number of 
plots analyzed, and method of classification.

In all cases, the values commonly used in ML, ACC (accuracy) an TNR (spec-
ificity), are very high at above 94% and should be considered unreliable because 
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they do not correspond to the values of metrics traditionally used in remote sensing 
(compare TPR/PA and PPV/UA columns). Ideally, both of these metrics should have 
high values. But regardless, there are still cases of FP and FN that do not necessarily 
reflect reality.

If we do not want to mark all FPs and FNs in red, or check all these cases vi-
sually, the following approach could be proposed. The most reliable classification 
result can be assumed due to, for example, the user accuracy PPV/UA. This implies 
a minimum commission error, i.e. if a plot is classified as a given crop then there is 
high probability that it is indeed that crop. This means that FP cases are really mis-
declarations, i.e. they can be highlighted in red. FN cases, on the other hand, require 
visual interpretation and are highlighted in blue.

For the purpose of marking controlled plots according to the idea of “traffic 
lights”, the semi-automatic NDVI_index method was chosen (results in the first 
row of in Table 9). This represents a compromise between the method for which the 
highest PPV/UA value was obtained and the maximum number of classified plots 
(NDVI_index; PPV/UA = 88.1%, no of plots = 6,986, SIGMA_CNN, PPV/UA = 88.9%, 
no of plots plots = 2,035).

Table 9. Comparison of classification accuracy for rapeseed

Classification’s 
method

No of 
parcels TP TN FP FN ACC TPR TNR PPV F1

NDVI_index 6,986 252 6,319 34 381 0.941 0.398 0.995 0.881 0.548

NDVI_SAM  
OA = 70.35% 199 34 158 6 1 0.965 0.971 0.963 0.850 0.907

SIGMA_index 4,165 152 4,143 96 22 0.973 0.874 0.977 0.613 0.720

SIGMA_CNN  
OA = 62.01% 2,035 96 1,902 12 25 0.982 0.793 0.987 0.889 0.838

The idea of “traffic lights” can be illustrated for rapeseed as the following:
 – green – plots classified as rapeseed and are really rapeseed (TP),
 – red – plots classified as non-rapeseed and declared as rapeseed (FP),
 – blue – plots classified as oilseed rape and declared as another crop (FN).

An example application of the “traffic lights” idea can be found in the Inter-
net [22] and also in Figure 6. On the color compositions (Figs. 7, 8), it is possible to 
correctly analyze verified plots (Fig. 6 – in green) and problematic plots (Fig. 6 – in 
red and blue). Compositions were created from S-2 images dated 21.05.2017. In the 
natural colors (Fig. 7 – channels 432), the rapeseed is light green, and in the false 
color composite (Fig. 8 – FCC channels: 843) it is pink.
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Plots in blue (FN) can be easily accepted as rapeseed based on their color com-
positions. This represents the omission error of the semi-automatic classification 
based on NDVI index. In contrast, the plots in red (FP) actually on the S-2 composi-
tions of the day are different from other plots covered with rapeseed.

Fig. 7. Results of using “traffic lights”: the example of rapeseed

Fig. 8. Composition in natural colors 21.05.2017 – rapeseed in green
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In the conclusion of the presented example, it should be stated that such a de-
tailed analysis is not necessary during a SAPS inspection. In this case, merely the 
confirmation of agricultural activity is sufficient for marking the parcel in green, 
regardless of whether there is maize or wheat on it.

Fig. 9. False Color Compost (FCC) 21.05.2017 – light red colored rapeseed

4. Conclusion

In this paper we wanted to discuss the idea of “traffic lights” in IACS on a se-
lected test area. Classification was done on NDVI and SIGMA time series calculated 
from the Sentinel-1 and Sentinel-2 satellite images registered in the season of au-
tumn 2016 to autumn 2017. Classification was performed by automatic and semi-
auto matic methods.

Automatic classification of 6 crop groups resulted in the following accura-
cy (OA) on independent test fields:

 – SIGMA CNN 62.01%,
 – NDVI SAM 70.35%.

The accuracy of the validation on the training fields was:
 – SIGMA CNN 98.50%,
 – NDVI SAM 72.79%.

For comparison, it is possible to refer to the crop classification accuracy report-
ed in the literature. It depends on a number of factors: the type of crop being clas-
sified, the climate zone, the design of accuracy analysis and metrics used. Indeed, 
metrics computed during validation, i.e., computed based on samples drawn from 
training set instead of learning-independent test set, are often reported as accuracy. 
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In this case, the accuracies are very high. A second factor that artificially inflates the 
accuracy is the provision of the average ACC value as OA.

However, we can cite the results of studies for which the accuracy analysis 
was performed in a manner similar to our study, with AO’s obtained in Belgium 
of 82% [10], Australia 84.2% [11], South Africa 82% [12] or Poland 69% [7], 81% [15]. 
In this context, the classification accuracy presented in this paper is moderate, but 
consistent with similar studies on the verification of declarations in Poland [7]. In 
both cases, the time series of indices were classified. On the other hand, our later re-
search on all Sentinel-2 channels allowed us to obtain a higher accuracy of 81% [15], 
similar to the above-cited results of foreign researchers.

The aim of this paper was to try to implement the idea of “traffic lights” regard-
less of classification accuracy. Finally, the best classified crop, rapeseed, was chosen 
and a semi-automated classification method with following accuracy metrics:

 – SIGMA – PPV/UA 61.3%, TPR/PA 87.4%, F1 72.0%,
 – NDVI– PPV/UA 88.1%, TPR/PA 39.8%, F1 54.8%.

The results of the analysis based on NDVI and the metric of PPV/UA 88.1% is 
available on the website [22] (an example in Figure 7). It should be mentioned that 
the example presented on this page is too detailed for SAPS control and more appro-
priate for voluntary coupled support (VSC).

Another issue discussed in the paper was accuracy metrics. In conclusion, it 
should be stated that the metrics of accuracy (ACC) and specificity / true negative 
rate (TNR) used in binary classification and popular in machine learning, should be 
considered unreliable for multi-class classification. In all cases, they reach very high 
values around 90% or higher and give an artificial impression of high classification 
accuracy. This is due to the high proportion of “true negative” (TN), which includes 
all other classes not correctly classified into a class.

Classification accuracy analysis has been of interest for many years [21, 23]. Al-
though many researchers have proposed different accuracy indices, the traditional 
accuracy metrics of OA, PA and UA, are still considered as the most reliable in re-
mote sensing [23].

However, nowadays, metrics automatically calculated in machine learning clas-
sification (sensitivity/specificity and accuracy) are increasingly reported in remote 
sensing. These metrics are designed to evaluate binary tests, e.g., the evaluation of 
medical tests with only positive-patient sick (TP), positive-patient healthy (FP), neg-
ative-patient sick (FN) and negative-patient healthy (TN). These metrics are inade-
quate for multi-class classification, and in particular, average accuracy (ACC) is not 
equated to overall accuracy (OA) [15]. The impact of ignored classes on the classifi-
cation result can be seen in [24].

In conclusion, it can be said that, regardless of the automatic classification meth-
od and the accuracy achieved, one should consciously choose the appropriate accu-
racy metric to minimize the risk of error. After all, not all of the cases of FP and FN 
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are in fact a mismatch between the declaration and the actual crop. It also seems 
necessary to check some lights depending on the procedure adopted.
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