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Abstract: Caused by excess levels of nutrients and increased temperatures, freshwater 

cyanobacterial blooms have become a serious global issue. However, with the 
development of artificial intelligence and extreme learning machine methods, the 
forecasting of cyanobacteria blooms has become more feasible. We explored the 
use of multiple techniques, including both statistical [Multiple Regression Mod-
el (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], 
to approximate models for the prediction of Microcystis density. The data set was 
collected from Oubeira Lake, a natural shallow Mediterranean lake in the north-
east of Algeria. From the correlation analysis of ten water variables monitored, 
six potential factors including temperature, ammonium, nitrate, and ortho-phos-
phate were selected. The performance indices showed; MLR and PSO provided 
the best results. PSO gave the best fitness but all techniques performed well. 
BSA had better fitness but was very slow across generations. PSO was faster than 
the other techniques and at generation 20 it passed BSA. GA passed BSA a little 
further, at generation 50. The major contributions of our work not only focus on 
the modelling process itself, but also take into consideration the main factors 
affecting Microcystis blooms, by incorporating them in all applied models.
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1. Introduction

Freshwater cyanobacterial blooms have become a serious global issue and are 
caused by excess levels of nutrients and increased temperature [1]. Exposure to cy-
anotoxins may affect public health and thus the reliable detection and quantification 
of cyanobacteria has become a priority in water quality management [2, 3]. Howev-
er, the highly complex nonlinearity of water variables and their interactions make 
blooms difficult to model [4]. The bloom process is a complex dynamic system of 
multi-dimensional coordination associated with multiple factors, with a high, intrin-
sic non-linear dissipative structuring [5]. They are highly variable, and the parame-
ters involved in their occurrence are unstable [6]. Microcystis predominates in sever-
al large lakes around the world, such as Lake Erie in North America and Lake Taihu 
in China [7–9]. It is also the most widespread species in the Mediterranean area, and 
its monitoring is a water quality priority [10–16]. With the development of artificial 
intelligence and extreme learning machine methods, the forecasting of cyanobacte-
ria blooms has become more feasible [17]. Phenomena such as algal blooms inspired 
researchers to improve and develop evolutionary optimization algorithms within 
the frameworks of swarm intelligence, and natural selection like Particles Swarm 
Optimization (PSO), Bird Swarm Algorithms (BSA), and Genetic Algorithms (GA), 
to enhance convergence capabilities. Machine learning-based approaches have been 
used for a wide variety of applications in environmental sciences [18–20]. Wang [21] 
compared Support Vector Machine (SVM) and linear regression model for esti-
mating phycocyanin pigment using band ratios as inputs. BSA [22], PSO [20], and 
GA [21] are recent meta-heuristic algorithms, which are global optimization algo-
rithms that use a strong formulation strategy to achieve optimal or semi-optimal 
problem solutions.

This research aims to obtain the dependency relationship of the cyanobacteria 
Microcystis (output), as a function of the ten physical and chemical input parameters 
described further, reduced to six after a correlation analysis and combined accord-
ing to [23]. Comparisons are made among the different models, showing that these 
advanced modelling techniques are effective new ways that can be used for moni-
toring Microcystis in water bodies.

2. Materials and Methods

2.1. Study Area

With 2200 ha of surface area, Oubeira Lake is the largest shallow freshwater 
lake in Algeria (Fig. 1). It is located in the far northeast of Algeria, in El-Kala Na-
tional Park. It has four major tributaries: The Demet Rihana River in the north, Mes-
sida River in the south, Dey-Graa River in the east, and Boumerchen River in the 
northeast. Oubeira Lake is distinguished by its high biodiversity, as it is home to 
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numerous animal species, such as migratory and sedentary birds, fish, and mussels. 
It is also home to vegetal species dominated by floating macrophytes, such as the 
water chestnut (Trapa natans), the white water-lily (Nymphaea alba), and the yellow 
water-lily (Nuphar lutea). Several studies conducted in this endorheic lake revealed 
the existence of cyanobacteria and their cyanotoxins, with the prevalence of Micro-
cystis and its toxin, microcystin [24–26].

Fig. 1. Location of the different sampling stations (monthly and seasonally)

2.2. Experimental Dataset

The data sets used for the analysis were collected monthly over 12 months at 
11 stations from April 2015 to March 2016 and seasonally over four seasons at 20 sta-
tions, from spring 2015 to winter 2016. The stations are designated as follows (S1, S2, 
S3, S4, S5, S6, S7, S8, S9, S10, and S11) sampled monthly. While the seasonal sampling 
consisted of adding nine additional stations (S12, S13, S14, S15, S16, S17, S18, S19, and S20) 
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to the 11 of the monthly sampling to reach a total of 20 stations. The total number of 
data processed monthly was 132 values and 80 values seasonally for each parame-
ter. The temporal distribution of this dataset was one year of monitoring ten envi-
ronmental factors (inputs) and Microcystis densities (output). The biotic parameter 
information is expressed in cells per millilitre of Microcystis. It should be pointed out 
that the measurements were carried out between 8.00 a.m. and 2.00 p.m. The sam-
pled stations were subjected to a pre-sampling survey. A strict field protocol was 
established to collect all of the information related to our stations, ensuring that all 
remarks and observations were recorded in the sampling day, as well as daily mon-
itoring of meteorological phenomena and exceptional events occurring on our site. 
The choice of the location of the sampling stations was greatly influenced by: the 
hydrographic characteristics of Oubeira Lake, direction of prevailing winds; areas 
occupied by macrophytes; the presence of forests around the lake; areas frequented 
by fishermen; road layout; the existence of urban agglomerations; agricultural land; 
and pastures on its shores.

We considered the only dominant genus in the cyanobacteria community Micro-
cystis. We thus obtained the dependency relationship of its density as a function of 
six maintained physical-chemical variables.

2.3. Description of Microcystis  
the Biotic Parameter (Output)

Microcystis [Cells · L−1] is a cyanobacteria genus, unicellular – colonial, its colo-
nies take a variety of shapes, with a colourless and homogeneous mucilage. Its cells 
are spherical, discoid, or irregular. The colonies are gelatinous, floating on the sur-
face or fixed to the substrate, amorphous, irregular, even net-shaped, with vacuoles. 
Species are differentiated by cell size, distribution, colony structure, and mucilage 
texture. The cells are spherical or hemispherical after their division, with a homo-
geneous, greyish, yellowish, or blue-green filling. Several toxic strains can produce 
the hepatotoxin “microcystin”, and have a global distribution. Among the most fre-
quent are: M. aeruginosa, M. wesenbergii, M. viridis, M. flos-aquae.

2.4. Description of the Physicochemical Parameters  
(Abiotic Inputs Parameters)

Water temperature (T) [°C], dissolved oxygen (O2) [mg · L−1], conductivity (Cond) 
[µS · cm−1], and pH were determined in situ using a multi-parameter (3420 IDS, 
WTW, Germany).

Transparency (Trans) [cm] was measured with the Secchi disc, the depth at 
which the patch on the disc becomes invisible is taken as a measurement of wa-
ter clarity. Suspended solids (SS) [mg · L−1] was determined by the differential 
weighing method after filtering the sample through a Whatman glass fibre filter 
(GF/C 47 mm).
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Nutrients [µmol · L−1]: nitrate (NO3
–), nitrite (NO2

–), ammonium (NH4
+), and ortho- 

phosphate (PO3
3–)samples are filtered through a Whatman GF/C filter (0.45 µm). The 

measurements were carried out on the filtrate according to the colorimetric methods 
described by [27].

2.5. Microcystis Colonies Identification  
and Cells Enumeration

The raw water samples were filtered through a 20-µm mesh size plankton net 
and preserved in 5% formaldehyde. An additional filtration through polycarbonate 
membranes (47 mm diameter, Whatman, Germany) with a nominal porosity of 5 µm 
was conducted preceding the identification process and performed using an optical 
microscope (Carl Zeiss, Axiostar plus, Germany) equipped with a UI-1240 SE camera 
(IDS, Germany). The latter was used to take measurements of Microcystis colonies 
and cells. As proposed in the updated literature by [28, 29] the identification was 
based on the microscopic observation of morpho-anatomical criteria using the clas-
sical method. The count of cells was carried out by injecting a volume of the sample 
in the wells of the Nageotte counting cell (ISOLAB, 0.5 mm deep). This latter is a spe-
cial slide with a grid of 40 strips, equal to a given surface area and a volume of 50 µL. 
The number of cells observed on a certain number of strips, therefore, corresponds 
to a certain volume, which allows an estimation per millilitre [30]. Cell densities in 
a colony were determined as a function of colony surface area and mean cell surface 
area. The number of cells was then obtained from the following formulas:

 c
cells

cm

S
N A

S
= −  (1)

where:
 Ncells – number of cells,
 Sc – colonial surface area,
 Scm – cell mean surface,
 A – visual estimation of the proportion x/100  of the colony void:
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S
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The obtained total number of colonial cells was then introduced into the formu-
la below to determine the cellular density per litre of raw water:
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=  (4)

where:
 Ncells – the total of the cells counted from the different colonies
 cellsn∑  – the sum of the cells counted from the different colonies,
 b – the number of strips on which we counted 30 individuals,
 v – volume of the filtered sample [mL],
 40 – total number of strips in the swimmer cell,
 50 – volume of Nageotte’s cell [µL].

To obtain a satisfactory estimation of cyanobacteria abundance, the counting 
process was replicated for each sample (3 to 5 observations).

3. Theory

3.1. Microcystis Model

To ensure some non-linearity in the inputs, the data set was adapted and a lin-
ear prediction model inspired by the work of [23] was modified:

 ( ) 0
1 1

( ) ( ) ( )
m m

predicted i i ij i j
i j

Mictis t b b X b X t X t
= =

 
= + +  

 
∑ ∑  (5)

 2 2 2
1 1 1 2 1 2 2 2 3 )( ) ( , , , , , , , , , ,predicted m m mMictis t f X X X X X X X X X X X X= … …  (6)

where:
 Mictispredicted(t) – the predicted Microcystis density,
 Xi(t), Xj(t) – physicochemical parameters,
 bi, bij – coefficients computed by later modelling algorithms.

This parameter combination will increase the input variables from only 6 

to 28 parameters. To adapt Equation (17), in Section 3, to the generated varia-
bles in Equation (5), variable changing is required. This implies new variables 
Xij = Xi · Xij = Xi · Xj and in this case Equation (5) becomes: 
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Equation (7) will be used in this work as the main Microcystis model and can be 
extended to n combinations as follows: 

 ( )1 1 1 1 2 1, , 1, ,2
2 2 1 1

0
1

i i in n
n n

m m m

predicted i i i i i i i
i i i i i

Mictis b b X b X b X
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−= = =
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where 
1, , 1

n

in

i
i jj i

X X
… =

=∏  is the nth variable combination. n = 2 is used and the main 
reason, as seen in Table 1, is due to the number of observations collected in our work, 
since we have only 132 observations for training and 80 for testing. Therefore, if we 
used a higher number of combinations, the number of coefficients would exceed the 
number of equations.

Table 1 presents the number of variables after combination using Equation (8) 
and for six maintained variables.

Table 1. New number of variables after combination

Number of variables 1 2 3 4 5 6

Number of combined variables 7 28 84 210 462 924

3.2. Model Performance Indices

We computed six performance indices and compared the developed models. 
The six indices, inspired by [19], are the coefficient of correlation (R) (9), the Will-
mott index of agreement (d) (10), the Nash–Sutcliffe efficiency (NSE) (11), the root 
mean squared error (RMSE) (12), the mean absolute error (MAE) (13), and the mean 
squared relative error (MSRE) (14). RMSE and R are used as the main comparison 
components, the other indices are computed as a reference for further work.
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where:
 N – number of data points,
 Oi – some measured value,
 Pi – corresponding model prediction,
 Om, Pm – the average values of Oi and Pi respectively.

3.3. Multiple Linear Regression (MLR)

To understand how MLR works, assume we have n pairs of observation data set 
{xi, yi}i = 1,···, n as shown in Figures 2 and 3.
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-25 
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-15 
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y=–0.5x 2  +  x  

Real data 
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Fig. 2. Example of a linear model with y = –0.5x2 + x
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The main modelling objective was to develop a simple relationship between 
the two variables x (i.e. input variable) and y (i.e output variable) so that we could 
develop a linear Equation (15):

 y a bx= +  (15)

where a is a constant (i.e. bias) and b is the slope of the line.

Generally, the straight line will never pass by all the points in the graph. Thus, 
Equation (15) should be rewritten as follows:

 y a bx= + + ϵ  (16)

where ϵ represents the error difference between the values of xi and yi at any sam-
ple i. Thus, to formulate the most accurate line to approximate x and y, we have to 
formulate the problem as an optimization problem such that we can search and find 
the best values of the parameters (i.e. â and  ̂b). In this case, we need to minimize 
the sum of the error over the whole data set. The simple linear model (16) can be 
expanded to a multivariate system of equations as follows:

 0 1 1 2 2 i iy b b x b x b x= + + +…+  (17)

where xj is the jth independent variable. In this case, we need to use LS estimation to 
compute the optimal values for the parameters b0, b1, b2, ···, bj. Equation (17) will be 
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Fig. 3. Microcystis linear model modelled as  
 4 3 4( ) 0.58265 0.3325 0.37068 0.093884 NH 0.19691 NO 0.012184 POpredictedMictis t T Condu Trans= ⋅ + ⋅ − ⋅ + ⋅ + ⋅ + ⋅



40 S. Arif, A. Djellal, N. Djebbari, S. Belhaoues, H. Touati, F.Z. Guellati, M. Bensouilah

used as the form of Equation (7). Thus, we have to minimize the optimization func-
tion L, which in this case can be presented as:

 ( )2
0 1 1 2 2

1 1

ˆ ˆ ˆ ˆ
N N

i i i i j ij
i i

L y b b x b x b x
= =

= = − − − −…−∑ ∑ϵ  (18)

To obtain the optimal values of the parameters 0 ̂ ˆ, , jb b… , we have to compute the 
differentiation for the functions:

 
0 1 2

0ˆ ˆ ˆ ˆ
j

L L L L
b b b b
∂ ∂ ∂ ∂

= = =…= =
∂ ∂ ∂ ∂

 (19)

By solving the set of Equations (19), we can produce the optimal values of the 
model parameters and solve the multiple regression problem. This solution is more 
likely to be biased by the available measurements. If there is a large number of obser-
vations, the computed estimate of the parameters would be more robust [31]. This 
technique provides poor results when the number of observations is small.

Algorithm 1 shows the MLR algorithm used in this work. Inspired from [32, 33], 
this algorithm computes model coefficients based on orthogonal-triangular decom-
position [34]. Matlab function regress [33] was used to produce model coefficients.

Algorithm 1: Regress

Result: 
Model coefficients for the data set X;
[Q,R,E]=qr (X);
% Orthogonal-Triangular Decomposition (produces an “economy size” 
decomposition in which E is a permutation vector, so that A (:,E)  = Q × R);
b = (Q’ ∗ y)/R;
% b is the coefficient of the MLR model;

3.4. Support Vector Machines (SVM)

SVM is a powerful supervised learning model for prediction and classifica-
tion [31]. SVM was firstly introduced by Vladimir Vapnik and his co-workers at 
AT&T Bell Laboratory [35]. The main idea of SVM is to approximate the training 
data set with higher dimensional space using a nonlinear mapping function and 
then perform linear regression in higher dimensional space to separate the data [36]. 
Data mapping was done using a predetermined kernel function. Data separation 
was done by finding the optimal hyperplane (called support vector with the maxi-
mum margin from the separated classes). Figures 4 and 5 show an example of opti-
mal hyperplane. Figure 4 shows different lines separating data but with small mar-
gins, Figure 5 shows the optimal line separating data sets with maximum margins.

The kernel trick avoids the explicit mapping, instead of learning a nonlinear 
function or decision boundary, this trick implies getting linear learning algorithms. 
For all x and x0 in the input space X, certain functions K (x, x0) can be expressed as 
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an inner product in another space V. The function K: X X× →  is often referred 
to as a kernel or a kernel function. Figures 4 and 5 show an application of kernel 
transformation. In this example, the data set can be modelled as a nonlinear function 
y(x) = x + 2x2 with single variable x, but if a variable substitution is done a x1 = x and 
x2 = x2 y becomes the linear function ( )1 2 1 2 , 2y x x x x= + .

Training for a SVM has two phases [37]: the first is to transform input data to 
a high-dimensional feature space using the Kernel function. The second is to solve 
a quadratic optimization problem to fit an optimal hyperplane.

 
0.1 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0 

x 

-0.5 
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0.5 

1 

1.5 

2 

2.5 

3 

3.5 

y=x+2x 2 

Data set 
Nonlinear model 

Fig. 4. Nonlinear model with a single variable

Fig. 5. Optimal line with two variables K(x) = (x, x2)
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Table 2 shows popular kernels used with  SVM.

Table 2. New number of variables after combination

Type of SVM Kernel function Description

Gaussian
2

1 2
1 2 2( , exp

2
)

x x
K x x

−
=

σ
σ is the width of the kernel

Linear 1 2 1 2( , )TK x x x x= –

Polynomial 1 2 1 2( ) (, 1)TK x x x x ρ= + ρ is the order of the polynomial

Sigmoid 1 2 0 1 2 2( , tan )h(β β) TK x x x x= + –

3.5. Particle Swarm Optimization (PSO)
PSO is an interesting evolutionary computation algorithm first introduced by 

Kennedy and Eberhart [38]. This algorithm is inspired by the swarm behaviour of 
organisms such as the flocking of birds and fish schools. This algorithm consists of 
a swarm of particles that search for the best position, including the best personal 
and global position, based on its best solution [31]. Equation (20) shows the moving 
process of each particle:

 1 1 2 2( )( )new best best

new new

V w V c r p X c r g X
X X V

= ⋅ + ⋅ − + ⋅ −
= +

 (20)

where:
 c1, c2 – learning factors,
 V, X – current particle velocity and position respectively,
 Vnew, Xnew – new velocity and position of particles, respectively,
 w – the inertial weight,
 r1, r2 – the random numbers between 0 and 1.

Figure 6 shows particle inertia behaviour in function of its own and global 
inertia [39].

Fig. 6. Iteration scheme of the particles
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Wang [39] summarized the PSO algorithm as follows: It is a swarm-based 
searching process, in which each individual, also known as a particle, is defined 
as a potential solution of the problem defined in D-dimensional search space, each 
particle can memorize the optimal position of the swarm and that of its own, as well 
as its velocity. In each generation, each particle adjusts its velocity according to the 
swarm information; the new velocity is used to compute the new position of the 
particle. According to [39], the PSO algorithm can be summarized as in Algorithm 2.

Algorithm 2: Particle Swarm Optimization algorithm

Result: Particle with best solution
Swarm initialization;
 while Ending condition is not satisfied do
  Particle fitness evaluating;
  Calculating the individual historical optimal position;
  Calculating the swarm historical optimal position;
  Updating particle velocity and position according to the velocity  
  and position updating equation;
 end

3.6. Genetic Algorithms (GA)

Unlike the standard search techniques, GA search among a population of points, 
work with the coding of the parameter set and use probabilistic transition rules [21]. 
Initially, a population of m points is chosen randomly in the search space. The fitness 
function values are calculated at all points and compared.

Given a function f = f(x1, x2,···, xn) subject to ai ≤ xi ≤ bi, i = 1, 2, ···, n, the main 
objective is to find the set of parameters which leads to a minimum value of f. Ge-
netic Algorithms work with the coding of the parameters. The most frequently em-
ployed parameter is binary coding [21]. An l-bit binary variable is used to represent 
one parameter xi. The integer of the decoded binary variable ranges from 0 to 2l − 1 
and can be mapped linearly to the parameter range (ai, bi). Connecting the coding 
of all parameters forms the coding for each point in the space to be searched, for 
example:

1010010 0100111 ... 1001010 0000100
(21)

x1 x2 ... xn–1 xn

It is important to note that the search range for each parameter must be speci-
fied. One of the most often used GA follows the following steps [22, 34]:
Step 1: Locate m points randomly in the search space.
Step 2: Find the fitness function value for each point.
Step 3: Rank the points so that their function values are in descending order.
Step 4: Assign a probability value pj, using fitness proportionate selection or rou-

lette wheel selection, to each point giving the higher probability to point of 
the lower (better) function value.
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Step 5: Select two points A and B from the m points at random according to the 
probability distribution8, pj, j = 1, 2, ···, m.

Step 6: Select two-bit positions, k1 and k2, along with the overall coding of the param-
eter set at random (Fig. 7), giving each bit position the same chance.

Step 7: Form a new point by taking the values of the bits from k1 to k2 − 1 of the 
A point coding and values of the bits from k2 to the end and from 1 to kj − 1 
of the B point coding (crossover).

Step 8: Randomly at a probability pmutation, change some of the bits of the newly 
formed point (mutation).

Step 9: Repeat steps five and eight m0 times (with m0 ≤ m) so that m0 new points are 
produced. m0 points are then replaced by the new ones keeping m − m0 best 
points, forming a new generation for further search.

Step 10: Repeat steps 2–9 n times9. The point with best fitness value is recorded, and 
in step 2 if the newly generated m points are all inferior to the best point, 
the latter is re-inserted into the population by replacing one of the m points 
randomly.

3.7. Bird Swarm Algorithm (BSA)

BSA is a new swarm intelligent and global optimization algorithm inspired by 
the behaviour of the social iteration of birds in nature [22, 40]. BSA is based on three 
main behaviours of birds, namely foraging, vigilance, and flight. The algorithm can 
be summarized in the following five rules:
Rule 1: Each bird can be in one of two states: vigilance or foraging.
Rule 2: In the foraging status, each bird saves and keeps track of its own best expe-

rience and the best experience among the swarm about food positions. This 
information will help it look for food.

8 Having assigned higher probabilities to better points in the last step, the better points have better 
chances to be selected.

9 Variable n is the maximum number of generations. Having assigned higher probabilities to better 
points in the last step, the better points have better chances to be selected.

Fig. 7. A schematic diagram showing how a new point is generated from two existing points 
(steps 6 and 7)
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Rule 3: In the vigilance status, each bird tries competitively to move toward the 
centre.

Rule 4: Birds keep moving from one site to another and they iteratively keep 
switching between producing and scrounging. It is assumed that birds with 
the highest reserves are producers and the lowest are scroungers. While the 
birds with neither highest nor lowest reserve are randomly assumed to be 
producers or scroungers.

Rule 5: Producing birds lead the search for food while the scrounging ones ran-
domly follow a producing bird.

4. Results

4.1. Data Collection

Training and validation were done using Matlab R2018b installed in a Win-
dows 7 64-bit computer equipped with an Intel core i3-3210 CPU @ 3.20 GHz and 
6 GB of RAM. The Microcystis density data set consists of 10 features and 12 months 
of data, covering a one-year period (April 2015 to March 2016). For the training data 
set, we sampled the data on a monthly basis for each of 11 stations so that only 
132 samples were used in our experiment. For testing, we acquired data from 20 sta-
tions during four seasons, giving 80 samples.

The statistical parameters of Mictis and the ten water quality variables data that 
are the mean, maximum, minimum, standard deviation, coefficient of variation val-
ues, and the coefficient of correlation with Mictis (i.e., Xmean, Xmax, Xmin, Sx, Cv, and CC 
respectively) are given in Tables 3 and 4 for training and testing data sets.

Table 3. The statistical parameters of the variables for training

Variable Description Unit Xmean Xmax Xmin Sx Cv CC

T water temperature °C 20.393 31.400 8.450 7.385 54.538 0.402

pH potential for hydrogen – 8.888 11.680 7.870 0.858 0.737 0.080

O2 dissolved oxygen mg · L−1 8.352 12.050 3.980 2.041 4.164 −0.275

Condu water conductivity µS · cm−1 497.174 551.000 388.000 45.830 2100.405 0.232

Trans water transparency cm 12.803 25.000 5.000 6.124 37.503 −0.426

NH4 ammonium µmol · L−1 4.257 25.846 0.205 4.322 18.675 0.449

NO2 nitrogen dioxide µmol · L−1 1.259 4.725 0.156 0.670 0.449 0.323

NO3 nitrate µmol · L−1 4.623 11.493 1.888 1.455 2.118 0.451

PO4
3− ortho-phosphate µmol · L−1 3.226 32.982 0.573 4.630 21.433 0.465

SS suspended solids mg · L−1 99.462 362.000 10.000 59.584 3550.220 0.189

Mictis Microcystis density · 103 cell · mL−1 171,052 431,311 31,533 99,819 9963,940 1
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Table 4. The statistical parameters of the variables for testing

Variable Description Unit Xmean Xmax Xmin Sx Cv CC

T water temperature °C 21.890 31.400 11.000 7.378 54.438 0.643

pH potential for hydrogen – 8.629 9.081 8.210 0.254 0.064 −0.029

O2 dissolved oxygen mg · L−1 7.893 11.480 4.300 1.969 3.878 −0.688

Condu water conductivity µS · cm−1 513.050 551.000 477.000 27.476 754.909 −0.395

Trans water transparency cm 11.688 20.000 5.000 5.213 27.180 −0.522

NH4 ammonium µmol · L−1 3.747 25.846 0.291 4.753 22.594 0.500

NO2 nitrogen dioxide µmol · L−1 1.161 4.725 0.168 0.644 0.415 0.612

NO3 nitrate µmol · L−1 4.439 11.493 1.601 2.178 4.745 0.521

PO4 phosphate µmol · L−1 4.371 32.982 0.692 6.741 45.443 0.539

SS suspended solids mg · L−1 115.050 362.000 15.000 68.549 4698.909 0.092

Mictis Microcystis density · 103 cell · mL−1 197,252 431,311 9,418 123,588 15,274,000 1

All input and output variables were standardized according to the Z-score 
method, also known as autoscaling transformation. According to [41], the data was 
normalized such that the inputs and output had a mean of zero and a standard de-
viation of one. This guarantees that the measurement scales were removed. Z-score 
was calculated as follows:

 ,
,

ki k m
ni k

dk

x
x

S
−=  (22)

where:
 xni,k – the normalized value of kth variable (input or output) for each 

ith sample,
 xi,k – the original value,
 mk, Sdk – the mean and standard deviation of the variable k respectively. Nor-

malization is an important process which significantly increases the 
performance of the models [19].

4.2. Input Extraction

After computing the MLR model of Microcystis concentration as output and 
each parameter as input, and computing R coefficient for training and testing data 
set (Fig. 8), we can see that some parameters change coefficient severely between 
training and testing. From the correlation analysis of ten water variables that were 
monitored, six variables were selected (T, Condu, Trans, NH4, NO3, and PO4). This 
can be explained by the weak effect of the unselected parameters (pH, O2, NO2 
and SS) on Mictis.
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To confirm the selected combination, Table 5 shows MLR results for different 
parameter combinations: all parameters, nutrients only10, parameters with high cor-
relation CC11 and selected parameters12. RMSE was used as reference. It can be seen 
that the modelling with all parameters gave better RMSE for training, but the used 
parameters gave higher RMSE for training and better results for the testing data set.

Table 5. Modelling results for different parameter combinations

Parameters Case RMSE MAE MSRE NSE R d

All parameters
training 0.260 0.190 0.068 0.931 0.965 0.969

testing 0.762 0.587 0.588 0.411 0.814 0.743

Nutrients only
training 0.749 0.604 0.565 0.434 0.659 0.658

testing 0.638 0.551 0.412 0.587 0.768 0.744

Parameters  
with high correlation CC

training 0.559 0.445 0.315 0.684 0.827 0.852

testing 0.549 0.424 0.305 0.694 0.859 0.882

Selected parameters
training 0.374 0.301 0.141 0.858 0.926 0.934

testing 0.609 0.487 0.376 0.623 0.862 0.760

10 NH4, NO2, NO3, PO4.
11 T, Trans, NH4, NO3, PO4.
12 T, Condu, Trans, NH4, NO3, PO4.

           T      pH     O2      Condu  Trans   NH4         NO2       NO 3    P O4     SS
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Fig. 8. Values of R for each parameter
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4.3. Modelling Results

Modelling using Multiple Regression Model, the coefficients bij were estimated 
using MLR to produce the optimal values  ̂ ijb . The actual and estimated Microcyst-
is density based on MLR in training and testing cases are shown in Figure 9. The 
scattered plots of the actual and predicted densities are shown in Figure 10. Equa-
tion (23) shows model computed using MLR.

a)

b)
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Fig. 9. Regression – actual and estimated Microcystis values in the training and testing cases:  
a) actual and predicted Microcystis regression for 11 stations (monthly);  

b) error difference – training case model – training case;  
c) actual and predicted Microcystis regression for 20 stations (seasonally);  

d) error difference – testing case model – testing case

c)

d)
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Modelling using SVM is based on SVM Matlab toolbox [35]. Table 6 shows 
SVM parameters, and Figure 11 – scattered plot of training and testing using SVM.

Table 6. SVM parameters

Parameter Value

Kernel function linear

Kernel scale (auto) 1.6992

Solver sequential minimal optimization

Fig. 10. Regression scattered plot
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Modelling using PSO is based on PSO toolbox for MATLAB developed by 
Mostapha Kalami Heris [42]. After several tests13, presented in Figure 12, PSO pa-
rameters are presented in Table 7, except for c1 and c2 that were inspired from the 
work of [43].

Table 7. PSO parameters 

Parameter Value

Maximum number of epochs 500

Number of particles 200

Lower bound of variables −1

Upper bound of variables 1

Inertia weight 0.5

Inertia weight damping ratio wdamp 1

Personal learning (acceleration) coefficient c1 1.49445

Global learning (acceleration) coefficient c2 1.49445

Fitness function JPSO = RMSE(Mictisreal, Mictispredicted)

13 The tests are done using 200 epochs with a population of 50 particles.

Fig. 11. SVM scattered plot
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Figure 13 shows the scattered plot of training and testing using PSO. Equa-
tion (24) shows the optimal model.

Fig. 12. PSO parameters: a) inertia weight w; b) inertia weight damping ratio wdamp

a)

b)
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After several tests14, presented in Figure 14, GA parameters are shown in Ta-
ble 8. GA MATLAB Toolbox [42] was used to compute model coefficients. Figure 15 
shows scattered plot of training and testing using GA.

14 The tests are done using 200 epochs with a population of 50 individuals.

Fig. 13. PSO scattered plot
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Fig. 14. GA parameters: a) best objective value; b) inertia weight damping ratio wdamp

a)

b)
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Table 8. GA parameters

Parameter Value

Maximum number of epochs 500

Number of particles 200

Lower bound of variables −1

Upper bound of variables 1

Crossover probability (cp) 0.7

Crossover inflation factor (ci) 0.4

Mutation probability (mp) 0.3

Mutation rate (mr) 0.5

Mutation step size (mss) 0.7

Mutation step size damp  (mssd) 0.3

Selection method ‘roulette wheel’

Selection pressure (sp) 1.1

Elitism? yes  
(best from current and previous generation)

Fitness function JGA = RMSE(Mictisreal, Mictispredicted)

Fig. 15. GA scattered plot
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BSA MATLAB toolbox [22] was used to optimize Mictis model using parameter 
shown in Table 9. These parameters were deduced after some tests with different 
values15 shown in Figure 16.

Table 9. BSA parameters

Parameter Value

Maximum number of epochs 500

Number of particles 200

Lower bound of variables −1

Upper bound of variables 1

The frequency of birds’ flight behaviours 19

The probability of foraging for food 0.1

c1 0.7

c2 0.7

a1 0.5

a2 0.9

Fitness function JBSA = RMSE(Mictisreal, Mictispredicted)

Figure 17 shows scattered plot of training and testing using BSA. Equation (26) 
is the Mictis model computed using said toolbox and parameters.

15 The tests are done using 200 epochs with a population of 50 birds.
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Fig. 16. BSA parameters: a) the frequency of birds’ fight behaviors;  
b) the probability of foraging for food; c) learning parameters
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Results of the evaluation criterion for MLR, SVM, PSO, GA, and BSA models for 
training and testing are shown in Tables 10 and 11.

Table 10. Evaluation criteria for the developed models using computation-based techniques

Criteria
Regression SVM

training testing training testing

Root Mean Squared Error (RMSE) 0.374 0.609 0.395 0.561

Mean Absolute Error (MAE) 0.301 0.487 0.296 0.427

Fig. 17. BSA scattered plot
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Mean Squared Relative Error (MSRE) 0.141 0.376 0.158 0.319

Nash–Sutcliffe Efficiency (NSE) 0.858 0.623 0.842 0.680

Coefficient of correlation (R) 0.926 0.862 0.918 0.861

Willmott index of agreement (d) 0.934 0.760 0.921 0.776

Table 11. Evaluation criteria for the developed models using heuristic-based techniques

Criteria
PSO GA BSA

training testing training testing training testing

Root Mean Squared Error (RMSE) 0.374 0.598 0.382 0.565 0.417 0.577

Mean Absolute Error (MAE) 0.301 0.478 0.305 0.447 0.337 0.429

Mean Squared Relative Error (MSRE) 0.141 0.363 0.147 0.324 0.175 0.337

Nash–Sutcliffe Efficiency (NSE) 0.858 0.637 0.852 0.675 0.824 0.662

Coefficient of correlation (R) 0.926 0.864 0.923 0.867 0.907 0.870

Willmott index of agreement (d) 0.934 0.766 0.931 0.780 0.914 0.721

Figure 18 shows training results for the different techniques, and they were all 
within real results.
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Fig. 18. Training results for different techniques

Table 10. cont.
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Figure 19 shows the performance indices of each technique for training and test-
ing. RMSE which must be as low as possible, and MLR and PSO gave the best results 
(for training and testing). Letter d is the Willmott index of agreement which carries 
a value between 0 and 1 and a value of 1 means a perfect match [19], as before MLR 
and PSO were near 1 for training phase, but for testing, PSO gave better results, 
which means a better agreement with real values.

Fig. 19. Performance indices of the different techniques: a) training; b) testing

a)

b)
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Figure 20 shows best cost in the function of iterations for the heuristic tech-
niques, PSO gave the best fitness but all the techniques gave good results. Initially, 
BSA had the better fitness, but was very slow in terms of the function of generations. 
PSO was faster than the other techniques and had passed BSA by generation 20. 
GA passed BSA a little further on, at generation 50. PSO gave the best result than 
the other ones and in a faster time; this can make the difference if the data set were 
larger and training was meant to take several hours. Our results are clearly impacted 
by the time scale adopted since the scatterplots show a visible bias at high concentra-
tion values for the testing but not the training dataset. This is due to the time interval 
between samples. For the training phase, data is about one month for each of the two 
successive sampling periods, so they are quite close compared to the testing phase. 
For this latter, the interval between two successive sampling rounds is three months, 
which means that on the time scale of the two sampling rounds, the time between 
two successive data used for testing is three times longer (3 months) than that of two 
successive data used for training (1 month).
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Fig. 20. Training best cost in function of the iterations

5. Discussion

As a first observation, it can be noted that the results of our study revealed 
that the applied approaches provide approximately the same level of precision. 
The PSO has revealed its overall potential for research through its performance 
in some optimization problems, particularly in function minimization. In PSO, 
a population of arbitrary solutions is initialized and optimizations are sought 
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by updating generations. Despite this fact, the PSO is not equipped with evolu-
tionary operators such as crossover and mutation. The potential solutions in the 
PSO, also known as particles, progress through the problem field by tracing the 
existing optimal solutions [44, 45]. The fact that Microcystis has a natural collec-
tive behaviour of decentralized, self -organized system, therefore, and that PSO 
uses information sharing in the framework of social partnership [46]; this appears 
to be an excellent technique to apply for modelling and forecasting Microcystis 
densities. The PSO has several features in common with evolutionary calculation 
techniques [45].

SVM is a new technique taken from the statistical learning model, is designed 
to classify elements by assigning them to one of two separated (disjoint) half -
spaces [47]. Therefore, SVM performs as a highly sophisticated learning machine to 
perform classifications, and temporal simulations [48]. It is an effective method for 
overcoming problems of low sampling, non-linearity and large dimension. Howev-
er, the choice of the different parameters of the SVM has a significant impact on the 
reliability of the SVM classification. Nevertheless, it is very complicated to choose 
the most adequate SVM parameters [49] because of the complexity of the cyanobac-
teria bloom process [5]. This may not only explain the discrepancies observed be-
tween SVM and PSO but also between the applied techniques, which were certainly 
caused by several factors influencing Microcystis densities that are not included in 
current models. Bobbin and Recknagel [50] studied the application for rule-based 
modelling and concluded that GA provide rules for extracting and developing mod-
els using temporal water quality data and confirm their effectiveness in predicting 
and determining the time and severity of algal blooms. However, the GA results in 
our work may be justified assuming that other factors controlling the proliferation of 
Microcystis are not taken into account in the model developed in our work. Despite 
the existence of several algorithms to handle optimization applications, it is recog-
nized that there is no universal algorithm.

Swarm intelligence algorithms often show premature convergence and risk hit-
ting with local optima. As a result, research remains in progress to develop more 
efficient algorithms [22, 51]. For that, BSA as a new bio-inspired algorithm remains 
in need of improvement since it presents similar problems in some situations, even 
though it has demonstrated its superiority over PSO in the work of [22]. Altay and 
Alatas [51] have concluded from their work on the BSA that it presents a premature 
convergence and may stumble in local optima of specific problem types, based on 
the limited amount of work carried out on the BSA in order to eliminate its defects 
by increasing its performance. Linear regression is one of the classical statistical 
models used to establish the link between dependent and independent variables. It 
is applied to show the dependence of one variable on many independent ones [52]. 
MLR has dominated several areas of time series forecasting [53]. It revealed good 
results even it assumes that the dependent and independent variables are linearly 
related, and they are normally distributed.
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6. Conclusions

We explored the use of multiple techniques, both statistical and evolutionary, to 
approximate models for the prediction of Microcystis density. From the correlation 
analysis of the ten water variables that were monitored, six potential parameters 
were selected (T, NH4, NO3, PO4, conductivity Cond, and transparency Trans), which 
were then combined to generate 28 variables. The combination of variables was use-
ful and successful in increasing the number of factors needed for modelling. The 
performance indices showed that MLR and PSO provided the best results among 
all applied techniques. PSO gave the best fitness, but all techniques performed well. 
BSA had better fitness, but was very slow across generations. PSO was faster than 
the other techniques and at generation 20 it passed BSA. GA passed BSA a little 
further, at generation 50. The major contributions of our work not only focus on the 
modelling process itself, but also take into full consideration the main factors affect-
ing Microcystis blooms by incorporating them in all applied models.
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