
GEOMATICS AND ENVIRONMENTAL ENGINEERING • Volume 16 • Number 1 • 2022

https://doi.org/10.7494/geom.2022.16.1.117

117

Michał Bednarczyk1

A Python Library
for the Jupyteo IDE Earth Observation Processing Tool
Enabling Interoperability
with the QGIS System for Use in Data Science

Abstract:	 This paper describes JupyQgis – a new Python library for Jupyteo IDE enabling
interoperability with the QGIS system. Jupyteo is an online integrated devel-
opment environment for earth observation data processing and is available on
a cloud platform. It is targeted at remote sensing experts, scientists and us-
ers who can develop the Jupyter notebook by reusing embedded open-source
tools, WPS interfaces and existing notebooks. In recent years, there has been an
increasing popularity of data science methods that have become the focus of
many organizations. Many scientific disciplines are facing a significant trans-
formation due to data-driven solutions. This is especially true of geodesy, en-
vironmental sciences, and Earth sciences, where large data sets, such as Earth
observation satellite data (EO data) and GIS data are used. The previous expe-
rience in using Jupyteo, both among the users of this platform and its creators,
indicates the need to supplement its functionality with GIS analytical tools.
This study analyzed the most efficient way to combine the functionality of the
QGIS system with the functionality of the Jupyteo platform in one tool. It was
found that the most suitable solution is to create a custom library providing an
API for collaboration between both environments. The resulting library makes
the work much easier and simplifies the source code of the created Python
scripts. The functionality of the developed solution was illustrated with a test
use case.

Keywords:	 Earth observation data processing, IDE, IPython, Jupyter notebook, web pro-
cessing service, GIS, data science, machine learning, API

Received: 2 September 2021; accepted: 27 October 2021

© 2022 Author. This is an open access publication, which can be used, distributed and repro-
duced in any medium according to the Creative Commons CC-BY 4.0 License.

1	 University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy
and Civil Engineering, Department of Geodesy, Olsztyn, Poland,
email: michal.bednarczyk@uwm.edu.pl, https://orcid.org/0000-0002-0450-5327

https://creativecommons.org/licenses/by/4.0/
mailto:email: michal.bednarczyk@uwm.edu.pl
https://orcid.org/0000-0002-0450-5327

118	 M. Bednarczyk

1.	 Introduction

The functioning of the world is increasingly based on collecting and processing
vast amounts of data. Tools and methods of data acquisition are constantly evolv-
ing, entering more and more spheres of our existence. Data are collected on every-
thing, at every time and in every place. This causes each area of life to change grad-
ually and today many things are done differently from the past. For example, in the
case of scientific research, model-driven approaches have been supplemented with
data-driven approaches [1, 2].

In recent years, there has been an increase in the popularity of data science
methods in many organizations. Data science is already widely used in business to
design successful strategies and policies. The economic sector is facing a significant
transformation due to the penetration of data-driven innovation in the business core.
A similar transformation is underway within many scientific disciplines [3, 4]. This
is especially true of geodesy, environmental sciences and Earth sciences. These are
disciplines that use large data sets, such as Earth observation satellite data (EO data)
and GIS data. The market for this data is broad and diverse. Companies providing
data develop or buy increasingly newer technologies and tools because the data
processing techniques and tools used several years ago are no longer sufficient. It
is also challenging to do without big data processing and storage techniques in this
field [5]. Such a situation was predicted earlier by the scientific community [6]. To-
day, there has been a significant increase in the number and variety of new data
science tools in response to the growing demand for the processing of increasingly
larger data sets [7, 8].

Geoinformation derived from Earth observation satellite data is used in many
scientific, governmental and planning tasks. These include, among others, geosci-
ence, atmospheric sciences, cartography, resource management, civil security, disas-
ter relief, as well as planning and decision support [9, 10]. Earth observation has irre-
versibly arrived in the big data era, among others, with the ESA’s Sentinel satellites
and with the blooming of so-called NewSpace companies, representing the market
for private access to space and technologies related to this issue. This not only re-
quires new technological approaches to manage and process large amounts of data
but also new analysis methods such as machine learning, artificial intelligence and
cluster analysis [11–14].

In 2019, the volume of only the open data produced by Landsat-7 and Land-
sat-8, MODIS (Terra and Aqua units) and the three first Sentinel missions (Sentinel-1,
Sentinel-2 and Sentinel-3) was around 5 PB [15]. These big data sets often exceed the
memory, storage and processing capacities of personal computers, imposing severe
limits that lead users to take advantage of only a small portion of the available data
for scientific research and operational application [16, 17]

The demand for new solutions is constantly increasing. Among the new plat-
forms and tools created to store and process EO data in recent years, for example [18]

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 119

are Google Earth Engine (GEE), Sentinel Hub, Open Data Cube (ODC), System
for Earth Observation Data Access, Processing and Analysis for Land Monitor-
ing (SEPAL), OpenEO, JEODPP, pipsCloud and Jupyteo IDE.

When writing about data science today, it is hard not to refer to Python. For
scientific computing, data science and machine learning it is the most preferred pro-
gramming language. This is mainly because Python is relatively easy to learn. Its
possibilities are very extensive, boosting both performance and productivity by en-
abling the use of low-level libraries and clean high-level APIs. Python is available on
many open-source or free-access platforms, including Jupyter, Anaconda Individual
Edition and Google Colab [19–23].

1.1.	 Jupyteo IDE

The variety of libraries available in Python, like Scikit-learn, Pandas (Python
Data Analysis Library), NumPy, TensorFlow, Matplotlib, and PySpark, makes tech-
niques such as machine learning or cluster analysis within reach of anyone who can
program and is an expert in the given field and is open to new programming tech-
niques. Although the functionality of existing libraries developed by others is often
sufficient, sometimes specialized or custom-made tools are required.

Building new tools and platforms for data science very often consists of adapt-
ing and improving existing solutions. In such cases, Python and the solutions that
use it are handy because most of them are open-source, making it possible to modify
their source code. To build a new tool or platform, it is necessary to formulate the
functional requirements of a planned solution. The software components must then
be identified among existing products to cover most of the specified requirements.
For example, Jupyter would be a good choice as the basis for a data science platform.
Functionalities that cannot be achieved by adjusting ready-made elements should
be programmed on one’s own. In the case of a web platform, the most convenient
way is to integrate everything into a single, scalable environment using Docker [24].
This is how the Jupyteo platform was created.

Jupyteo is an online integrated development environment (IDE) for earth ob-
servation data processing available on a cloud platform. It was created based on
an earlier project: JupyTEP IDE [25]. The current version – Jupyteo – is updated,
rebuilt and is more extensive than the original – JupyTEP IDE. The main objective
of building the Jupyter notebook IDE for EO data processing (Jupyteo) was to ex-
tend the Jupyter software ecosystem [26] and customize the existing components
for the needs of EO scientists and other professional and non-professional users
strongly related to the EO data community. The general approach was based on the
configuration, customization, adaptation and mainly integration of Jupyter, Dock-
er, EO data cloud infrastructure and accessible libraries, EO data tools (applica-
tion programming interface (API), European Space Agency (ESA) sentinel applica-
tion platform (SNAP) [27], Orfeo Toolbox (OTB) [28] and geospatial data abstraction

120	 M. Bednarczyk

library (GDAL) [29], etc.). Jupyteo also contains a set of extended Docker Stack based
on predefined Docker images and designated for different processing environments
and different tasks, such as machine learning, advanced scientific data manipula-
tion and SAR or GIS data processing.

Jupyteo is based on a web-based user interface in the form of an extended and
modified Jupyter user interface (UI) with a customized layout, EO data processing
engine and a set of predefined notebooks, widgets and tools (Fig. 1). The final IDE is
targeted to remote sensing experts, scientists and users who can develop the Jupy-
ter notebook by reusing embedded open-source tools, WPS interfaces and existing
notebooks. A fully scalable Docker environment is suitable for the demanding and
resource-consuming EO data processing community and automatic tasks related to
the processing and development of scripts and algorithms. Jupyteo is also equipped
with a spatial data viewer based on the Leaflet plugin for web browsers as a presen-
tation layer. It is used to browse EO datasets and display the results of the process-
ing running in Jupyteo on a map.

Fig. 1. Screenshot of Jupyteo IDE Earth observation processing tool main screen

The Jupyteo platform is available at https://www.jupyteo.com/. It was creat-
ed and is maintained by WASAT sp. z o.o. It is made available to external users
and used by WASAT in ongoing work for implementing tasks and cooperation
within scientific projects. Tasks performed using Jupyteo concern the development
of data processing algorithms (data science), mainly in the field of spatial data
processing, including Earth observation (EO) data and statistical analyses. The
platform is also used to validate all of the new solutions and algorithms. Jupyteo,
as a demanding platform, is constantly updated and extended. Jupyteo and all
its components run under a Linux system encapsulated in Docker containers.
Any further considerations and examples in this paper also apply to software
running under Linux.

https://www.jupyteo.com/

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 121

1.2.	 Motivation

If one needs to analyze and edit spatial information or compose and export graph-
ical maps using an open-source GIS system, QGIS is a good choice. It supports vector
and raster layers in many formats. QGIS is also well-integrated with other open-source
GIS packages, including PostGIS, GRASS GIS, and MapServer. Plugins written in Py-
thon or C++ extend QGIS’s capabilities. Plugins can help for example with geocoding
using the Google Geocoding API, perform geoprocessing similar to ArcGIS’s standard
tools and provide interfaces to PostgreSQL/PostGIS SpatiaLite and MySQL databases.

However, there is occasionally a need to perform statistical analysis, visualize
a graph, train and use a machine learning model or access cluster data sources us-
ing PySpark and Hadoop. The best way to perform such tasks is to use a program-
ming language, e.g. Python and a dedicated online platform such as Jupyteo with all
libraries and APIs preconfigured and integrated onboard.

There are occasionally projects which are needed to use both GIS and a dedicat-
ed platform to perform several advanced tasks. In this case, the exchange of data be-
tween both environments is necessary. However, it is a non-standard activity where
a case-by-case approach is often required, especially when it comes to exchanging
data between different environments and formats. Therefore, a question arises that
at the same time allows the purpose of this study to be formulated: what is the most
convenient way to combine the functionality of the GIS (QGIS) system with the func-
tionality of the Jupyteo platform in one tool? In this article the author wishes to share
his thoughts on the problem and discuss how best to solve it.

Therefore, the main goal of this work was to develop a solution that allows for
a convenient combination of the functionality of the QGIS system with the function-
ality of the Jupyteo platform (Jupyter). The way to achieve this goal was to create
a library in Python, providing the API for Jupyter scripts (notebooks) that made this
connection possible. It should be emphasized here that at the time of commence-
ment of works, there was no solution providing similar functionalities for both the
Jupyteo and Jupyter platforms. In the sources, one can find some attempts to solve
the problem in question, but none of the presented methods turned out to be suffi-
cient. They are discussed later in this article on current trends among solutions for
Jupyter to enable cooperation with QGIS.

Thus, the assumption was to combine the functionality of QGIS with the Jupy-
teo service. Jupyteo, as a web-based tool, gives online access, works in the cloud, has
access to repositories of spatial data and has the possibility of parallel and distrib-
uted processing. Moreover, Jupyteo has many tools pre-installed and implement-
ed, such as the already mentioned Scikit-learn, TensorFlow, or Pandas (and others).
However, QGIS allows the increased performance of spatial analyses and map ed-
iting, while Jupyteo does not have such advanced functionalities. It was necessary
to analyze possible scenarios and choose the most optimal and useful approach to
combine both environments.

122	 M. Bednarczyk

The common element that connects both environments is the Python interface.
QGIS has its Python interface – PyQGIS, which gives access to its functionality. In
turn, in Jupyteo, Python is the primary programming language. Since Jupyteo is
based on Jupyter, the search for a solution began with analyzing existing solutions
that allow Jupyter to interact with QGIS.

The sought after solution should work in such a way as to enable the notebook
to be integrated with QGIS using as little source code as possible. It should be ready
to use with a single library call. The same applies to individual functions such as
reading data from layers, saving or analyzing. Each of them should be supported
by one or several necessary methods. Thanks to this, the obtained solution will be
easy to use in many projects without the need to unnecessarily increase the volume
of the source code of the scripts, making them more readable and easier to modify.
The author’s experience has so far showed that the functionalities needed to work
with QGIS in notebooks using the PyQGIS interface are often complex. This can be
seen in the code snippet provided in section 2.2 of this paper. This snippet is an ex-
ample of printing the list of layers, where instead of a single call (e.g. listLayers), the
user needs to provide a loop to iterate and display the result. The solution discussed
in this paper should be able to somehow “hide” this complexity and simplify the
work. Several existing solutions on this subject were analyzed, three of which are
described below.

1.3.	 Current Trends among Solutions
for Jupyter to Enable Cooperation with QGIS

The search showed that there are relatively few existing solutions that enable
QGIS to cooperate with Jupyter. Three of them were taken into consideration:

1)	 Simple import of “qgis” library into Python script.
2)	 Use of the extension for Jupyter – 3Liz nbextension.
3)	 Connection of a Jupyter / IPython notebook to the Python console in QGIS.

Jupyteo is a server-side web-based system. Each modification of its components
requires installation or uninstallation of software components on the platform’s
backend on which it is running. Generally speaking, Jupyteo instance based on the
Linux system runs in the form of a Docker container with all necessary components
and configurations. For this, a separate Docker image is preconfigured with all nec-
essary components predefined in a Docker file. A QGIS image is based on an ex-
tension of SciPy Jupyter Docker Stack, an entry point for the definition of a QGIS
Docker image for Jupyteo. At the stage of starting the Jupyteo QGIS environment,
a Docker container with all QGIS configurations boots in the form of a highly usable
encapsulated system with all necessary QGIS-related libraries. The last part of the
starting process is opening a Jupyter notebook and importing post configuration
scripts that enable paths for QGIS resources.

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 123

Simple Import of a “qgis” Library into a Python Script

When QGIS is installed in the operating system, the Python interface for QGIS
can be connected to a notebook script by importing libraries associated with it. Here
is an example use of the QGIS library. Throughout this paper, “In [1]:” and “Out [1]:”
statements in the code stand for input-output IPython/Jupyter cells, respectively.

1.	 Import QGIS:

In[1]:
	 import qgis

2.	 Import needed libraries e.g.:

In[2]:
	 from qgis.gui import *
	 from qgis.core import *
	 from PyQt5.QtCore import *
	 from qgis.analysis import QgsNativeAlgorithms

The above example illustrates the most basic method. Thanks to this, PyQGIS
can be used in a similar way to the built-in Python console in QGIS, apart from
functions related directly to the QGIS GUI. However, creating a functional note-
book script and performing more advanced operations requires a large amount of
source code. This will make it more difficult, for example, to display the content of
GIS layers or processing results. Loading data into tools used in data science, such as
Pandas or PySpark, will also be problematic because PyQGIS is not compatible with
them, as well as it is not compatible with Jupyteo (Jupyter) notebooks. Of course,
this does not mean that working with QGIS in this way is impossible, but it can be
said that it might be complicated.

Use of the Extension for Jupyter – 3Liz nbextension

Jupyter (and thus Jupyteo) allows adding software components in the form of
so-called notebook extensions (nbextensions). It is a plugin-like mechanism. Exten-
sions can be downloaded or created by users. In the case of creation, the extension
must be prepared according to the template provided on the Jupyter [30] project
pages. It can then be installed in the Jupyter environment. Thanks to this, new and
non-standard functionality is added.

Based on this mechanism, another way of Jupyter’s cooperation with QGIS is
available [31]. This approach is shared on Github under the name qgis-nbextension
by 3Liz.com. Once installed, there is no need to import the QGIS library directly into
the notebook script. Access to QGIS functionality is available via so-called IPython
magic commands, for example:

In[1]:
% load_ext qgis_ipython
% qgis --verbose
from qgis.core import Qgis, QgsProject, QgsMapSettings

124	 M. Bednarczyk

By using this extension, the necessity of connecting to the qgis library is avoided.
However, it remains necessary to import individual classes depending on the activ-
ities that are to be performed using PyQGIS. Moreover, qgis-nbextension still does
not facilitate the collaboration of QGIS with data science and Jupyteo-related tools.

Connection of a Jupyter / IPython Notebook
to the Python Console in QGIS

It is also possible to reverse the procedure and connect a Jupyter notebook
to QGIS [32]. In this case, it is possible to run notebooks from the Python con-
sole in QGIS. However, this method requires Jupyter to be installed on the local
machine along with QGIS. In cooperation with a web-based system such as Jupyteo,
this method will not be appropriate.

1.4.	 Clarifcation of the Objectives

After becoming acquainted with the possibilities offered by the existing solu-
tions, their functionalities were compared with the requirements for the solution
sought. The results of the comparison are summarized in Table 1. The comparison
shows that none of the existing solutions offers all the required functionalities. On
this basis, the main goal of this paper could be formulated, which was to create
a solution that would enable cooperation between Jypyteo / Jupyter notebook and
QGIS, taking into account all the requirements listed in Table 1. It was assumed that
this solution would be a Python library providing a properly constructed API.

To achieve the goal, the following objectives were formulated:
	– Installation and configuration of QGIS in the Jupyteo platform system. It is

not about QGIS software with a graphical interface, but the ability to access
PyQGIS from the operating system shell.

	– Preparation of a test data set.
	– Analysis of data access methods (read / write) and analysis in QGIS projects

using the PyQGIS interface.
	– Development of a method of transferring map styling from a very extensive

QGIS environment to the simplified Leaflet browser, which is used in Jupyteo.
	– Implementation of the developed functionalities, such as those mentioned

above, inter alia: opening the QGIS project file in a notebook, reading, writ-
ing, viewing descriptive and graphical data, cooperation with Pandas tables.

	– Implementation of the test case including:
•	 data read from QGIS project using Python notebook script
•	 processing and analysis in Jupyteo notebook – Python script, especially

using tools unavailable in QGIS like Pandas and Scikit-learn
•	 re-saving the results in the QGIS project,
•	 reading and presentation of the obtained results both in QGIS UI and in

Jupyteo.

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 125

Table 1. Comparison of the features of the analyzed solutions
according to the required functionalities

Functionality description Simple
import

3Liz
nbextension

Python console
in QGIS Required

Connection between notebook and QGIS Yes Yes Yes Yes

Running notebooks that require the installation of
additional components on the Jupyter platform Yes Yes No Yes

Running notebooks remotely online Yes Yes No Yes

Methods providing data science-related
functionality (e.g. direct use of Pandas dataframes
(read/write data))

No No No Yes

Methods providing direct web browser viewer
layers visualization No No No Yes

Direct access to Jupyteo EO data repositories No No No Yes

Other methods simplifying access to QGIS
functionality (source code simplification and
readability)

No No No Yes

2.	 Solution Overview, Design Methods and Tools

In response to the problem posed, the author decided to create a Python library
called JupyQgis, which could be used from the script level in Jupyteo (Fig. 2). The
JupyQgis library provides an API for communication with QGIS via PyQGIS and
integrates the functionality of both QGIS and the Jupyteo platform. The library was
attached to the Jupyteo platform’s API, thanks to which it is available to all users
without the need to install it separately on individual virtual machines.

A need to develop the JupyQgis library appeared during research based on
EO data using the Jupyteo platform. More than once, projects that our team faced
required the use of GIS functionality and performing analyzes in an external envi-
ronment, which was most often QGIS. Thus, problems arose which allowed to for-
mulate requirements for Jupyteo’s cooperation with QGIS. The formulation of the
requirements made it possible to identify individual functionalities that should be
implemented to achieve the assumed goal. Due to the specificity of the Jupyteo plat-
form, which is based mainly on the use of Python scripts, the most universal form of
the solution seemed to be the Python library, integrated with the Jupyteo platform
environment, providing the appropriate API.

126	 M. Bednarczyk

In general terms, the methodology for developing JupyQgis can be presented
as follows:

	– Requirement specification – identification of problems to be solved and activ-
ities that can be automated.

	– Analysis of the existing solutions related to the problem of cooperation be-
tween Python notebooks and QGIS.

	– Designing the API structure, developing functional assumptions for (pro-
gramming) methods used in the API.

	– Implementation of the developed methods in the form of the JupyQgis li-
brary in Python.

	– Ongoing code testing and fixes.
	– Testing the implemented API functionality.

JupyQgis is constantly being developed and tested along with research in other
projects. The main element of the JupyQgis library is the JpQgis class. It contains
a set of methods needed for, among other things:

	– establishing a connection with the QGIS project,
	– viewing information about individual layers,
	– reading data from individual layers,
	– modification of the table structure of individual layers,
	– data editing in layer tables,
	– displaying a graphical representation of layers in the map viewer built into

Jupyteo.

There are also methods for processing and analyzing EO and GIS data not avail-
able in QGIS, such as: merging data from Pandas tables with QGIS tables or per-
forming fundamental statistical analyses such as, e.g., correlation analysis, linear
regression or Tukey’s test between selected GIS attributes together with an illustra-
tion in a graph.

Fig. 2. Cooperation schema between Jupyteo and QGIS with JupyQgis library usage

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 127

The JupyQgis library works with any project created in QGIS version 2 or 3.
The QGIS project, together with layer files, must be placed on the Jupyteo server
by uploading project files, or it should be accessible in any other network location
that allows remote data reading and writing to access the data. To illustrate the de-
veloped solution, selected functionalities of the JupyQgis library are presented and
discussed below.

Working with JupyQgis begins by establishing a connection with the QGIS proj-
ect by creating a JpQgis instance. The path and filename of the QGIS project must be
passed as a string parameter to the constructor method. In this way, one can access
all fields and methods of the source class:

In[]:
from jupyQgis import *
jpq = jpQgis(<path to qgs of qgz project file>)

There are two ways of accessing QGIS data by JupyQgis:
1)	 direct access to the QGIS project,
2)	 access through methods of the JpQgis class.

2.1.	 Direct Access to the QGIS Project

JpQgis allows access to a QgsProject instance through the JpQgis.project field:

In[]:
qgs_project_instance = jpq.project

This object gives full access to the opened QGIS project and can be accessed by
using the PyQGIS methods described in the QGIS documentation [33]. For the pur-
poses of this article, such a mode can be called standard access.

2.2.	 Access to Descriptive Data through JpQgis Class Methods

This access differs from standard access because the JpQgis class methods en-
able integration with Jupyteo and provide additional functionality. One of the goals
behind the creation of this library, along with the integration with Jupyteo, was to
simplify the syntax for the implementation of individual functionalities related to
PyQGIS. For example, to list all layer names available in the project, one can use the
listLayers() method:

In[]:
jpq.listLayers()

Out[]:
[‘layer1Name’,’layer2Name’,’layer3Name’]

128	 M. Bednarczyk

The above code will return a Python list containing names of all layers available
in the project. To get the same result with PyQGIS, along with opening the QGIS
project, one would have to use the following code:

In[]:
#Open QGIS project
prj = QgsProject()
prj.read(<path to QGIS project file>)

#Build array with layer names
layersTmp = []
for layer in self.project.mapLayers().values():
	 layersTmp.append(layer.name())
print layersTmp

As shown in the example above, thanks to JupyQgis, both operations – opening
a project and displaying an array of names – could be reduced into two lines of code.
The same will be in the case of any other function implemented in JupyQgis. For
example, to display the metadata of the selected layer, the getLayersFieldNames()
method can be used:

In[]:
jpq.getLayerFieldNames(<layer name>)

Access to the data contained in the layer’s table using JpQgis methods is real-
ized via Pandas. Thanks to this, data analysis and processing scope have become
significantly expanded because the Pandas library has extensive functionality in this
area [34]. Moreover, it is very popular and fast, and many other data science libraries
are compatible with it, such as Scikit-learn, NumPy, Matplotlib and PySpark, which
significantly facilitates the integration and exchange of data between different envi-
ronments.

For example, let us assume that there is a QGIS layer named ‘wojewWGS84’. To
get its table data as a Pandas DataFrame data structure, one can use getLayerTable-
Data() method from the JpQgis class:

In[]:
import pandas as pd
df = jpq.getLayerTableData(‘wojewWGS84’)

To manipulate this table, one can then access it like any other Pandas Data-
Frame. For example, to select a particular record and attributes, use the code:

In[]:
columns=[‘ID_WOJ’,’KOD_TERYT’,’NAZWA’]
df[df[‘ID_WOJ’]==3][columns]

The results of the above examples of using the JupyQgis library are shown in
Figure 3.

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 129

2.3.	 Presentation of Graphic Data in Jupyteo Web-map Browser

The presentation of graphic data is one of the essential functions of GIS systems.
The Jupyteo platform is designed to process spatial data and therefore it has been
equipped with a map viewer. As it is a network solution, the Jupyteo map viewer
uses the well-known and popular Leaflet library. However, it is not compatible with
QGIS projects and, compared to QGIS, it supports only a few formats. Among these
formats – apart from the internal vector format – there are also GeoJson, SVG, JPG,
PNG and WMS. When working with QGIS, the user can choose different formats.
Implementation of various format support by Jupyteo could turn out to be trouble-
some and unprofitable. For this reason, a method to automatically convert graphic
data to a Leaflet-supported format has been developed. This functionality is cur-
rently in the testing phase and works only with vector layers. When a QGIS layer is
displayed in the Jupyteo map viewer, it is automatically converted to the GeoJson
format and then goes to the map view (Fig. 4).

However, after this conversion, GeoJson data does not contain styling informa-
tion. Thus, there is a need to acquire additional information about the layer styles
during the conversion process. This information is saved differently depending on
the styling method used by QGIS for a particular layer. If the layer has a single style
for all features, the situation is quite simple. It is only necessary to read the color
or line style information and save it along with GeoJson data. However, if a classi-
fication has been used for a layer – e.g. due to the individual value of an attribute

Fig. 3. Loading data from QGIS to Jupyteo script with JupyQgis library usage

130	 M. Bednarczyk

or ranges of values – then each feature may have a different appearance style. Indi-
vidual styling in QGIS is performed using algorithms, each appropriately adapted
to a specific method of the layer’s chosen style. For this, the QGIS renderer class is
used, assigned individually to each layer depending on the styling settings, which
may change at any time while working with the program. This is a very flexible
mechanism from the point of view of PyQGIS API users. However, styling informa-
tion is not permanently saved with graphic data because layer styling is done on the
fly. For this reason, to obtain styling information for Jupyteo, one had to refer to the
individual layer settings via the PyQGIS API and save them in an additional column
as a GeoJson layer attribute. This was necessary because there is no QGIS styling
mechanism equivalent on the Leaflet library side. Thanks to this, the layer displayed
in Jupyteo looks practically the same as in QGIS (Fig. 5).

Fig. 4. Data conversion to GeoJson format with layer style information acquisition

Fig. 5. The same layer data presented in QGIS (left) and Jupyteo (right),
converted using the JupyQgis library

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 131

3.	 Application of the JupyQgis Library in Data Processing

The JupyQgis library was created to add GIS functionality to the Jupyteo IDE
platform. Thanks to this, it is possible to process the same spatial data sets in both
tools in one place. The user has at his disposal such functionalities as:

	– downloading data from the QGIS project,
	– processing the data on the Jupyteo side,
	– calling tools for processing GIS spatial data in Jupyteo,
	– saving processing results back to the QGIS project.

The described library is created as a convenience in work on projects that require
the processing of both EO data from repositories available in Jupyteo and GIS ana-
lytical data and tools. It is also important to consider how the JupyQgis library might
be applied in spatial data processing. A sample test case has been developed for this
purpose, which requires using GIS vector data and Python data science tools.

3.1.	 Sample Test Case: Spatial Data Processing

The test case analysis consisted of forecasting the average prices of a square me-
ter of residential real estate in the following statistical year and presenting the results
in a thematic map. Since the data at the author’s disposal concerned the years 2019
and earlier, forecasts covered the year 2020. The data were obtained from the current
databases of the Polish Central Statistical Office [35] and the author’s own studies.
The conducted analysis is of a statistical and illustrative nature and should not be
treated as a method of property valuation, e.g. for market purposes. The main pur-
pose of its conduct was to prepare a test case for the developed JupyQgis library.

Data sets constituting input data for analysis included:
	– Own data sources in the form of the QGIS project:

•	 administrative map of Poland with a layer of provinces and the data table
with codes and names of provinces,

•	 administrative map of Poland with a layer of districts and the data table
with codes, names of districts and prices of a square meter of real estate
in 2019.

	– Data obtained from databases of the Central Statistical Office concerning in-
dividual districts. Compiled over past years containing:
•	 number of residential buildings (2008–2019),
•	 average population density (2002–2019),
•	 average salaries (2005–2019),
•	 average price per square meter of residential premises (2015–2019).

Real estate appraisal is not the subject of this article, but the author decided to
provide some details related to this issue due to the test case described. The value

132	 M. Bednarczyk

of a property depends on many characteristics. Their effect on the price is different,
depending on the national economic and market conditions in which that property
is located [36]. When valuing a residential property, the following factors are tak-
en into account: access to roads and communication, distance from the city center,
access to power, water and sewage networks, proximity to green and recreational
areas, prices of similar properties and many others [37, 38].

Since the publicly available statistical data covering the entire territory of Po-
land are not that detailed, several features were selected which apply to the whole
country and generally result from specific features customarily used in property
valuation.

For the purposes of the current paper, it was assumed that the population
density and number of residential buildings are associated with the availability of
other characteristic features of cities such as a denser road network or an extensive
water supply and sewage network. Therefore, they can be treated as a summary
generalization of the influence of urban development features. When the popula-
tion density and the number of buildings are of greater value in a specific area, the
area can be treated as more industrialized and vice versa. Analyses presented by
financial institutions related to the real estate market also show a correlation be-
tween salaries and real estate value in Poland [39, 40]. In recent years, along with
the increase in salaries and their level in individual regions, the real estate value has
increased. Therefore, this feature is also used in this article as affecting the value
of a property.

Time is another quite important factor. It is observed that in a country such
as Poland, the value of real estate increases in the following years. There are also
regions where the real estate price is higher or lower than in others. This is due, for
example, to the level of industrialization (large cities) or the development of tourism
(sea, lakes, forests, or mountains). Price differentiation due to the above-mentioned
factors is permanent and is related to a specific location. Information on each dis-
trict’s location is expressed by the code value in the KOD_TERYT attribute and was
also included in the forecast.

The forecast algorithm consisted of several stages (Fig. 6). Work started with
the preparation and compilation of data. Data from both QGIS and the Central Sta-
tistical Office were loaded into one script in Jupyteo, where they were standardized
and appropriately processed. For the statistical data, it was necessary to select only
the columns required in tables, complete province identifiers, standardize column
names, change the decimal separator for numerical values and delete records with
missing values.

The individual datasets were then combined into one table. For connection, the
TERYT administrative unit identifier used in Poland, common to all records, was
used. This value appears in described datasets in the field “KOD_TERYT” and ap-
plies to individual districts. As a merge result, a dataset was created with the struc-
ture shown in Figure 7.

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 133

The resulting dataset contains all attributes that have been selected for forecast-
ing the value of a square meter of residential property, broken down by years in
individual districts, including:

	– AVG_SALARY – average salaries,
	– BUILDINGS – number of apartment buildings per district,
	– POP_DEN_KM – population density per square kilometer in a district,
	– YEAR – the year for which a given record was compiled in the table,
	– KOD_TERYT – territorial unit identifier (district), thanks to this attribute, the

property location in the country was taken into account in the prediction,
	– PRICE_RESI – square meter property price in the district.

The dataset was divided into training and testing parts. In order to train the
model, the Scikit-Learn library and a random forest algorithm were used. Model
validation showed an MAE error at the level of PLN 366 and accuracy at the lev-
el of PLN 0.96. The resulting model allows forecasting the price of a square me-
ter (PRICE_RESI) based on the following attributes: AVG_SALARY, BUILDINGS,
POP_DEN_KM, YEAR, KOD_TERYT.

Fig. 6. Sample test case of spatial data processing – algorithm diagram

Fig. 7. Input dataset structure

134	 M. Bednarczyk

As the data needed for the test case were available only for 2019 and earlier, the
developed model will also forecast PRICE_RESI values from this period. In order to
obtain the values for 2020, it was decided to supplement individual input attributes
with the predicted values for 2020. For this task, the prediction was carried out using
linear regression models built for the time series of individual attributes in rela-
tion to districts. This operation concerned attributes, which tend to change in time,
i.e. AVG_SALARY, BUILDINGS, POP_DEN_KM.

For example, the predicted value of AVG_SALARY for 2020 for the district “Po-
wiat tarnowski” was PLN 5412 (Fig. 8). The time series for its determination was
built based on data from 2015–2019. The values of other input attributes were auto-
matically predicted in the same way for each district.

Fig. 8. Illustration of one of the linear regression models,
which were automatically built for input attributes prediction for 2020

The data supplemented with values from time series forecasting was then used
to predict the PRICE_RESI values for 2020 using the previously described machine
learning random forest algorithm. The resulting dataset was transferred to the QGIS
project using the JupyQgis library. A thematic map was then prepared to illustrate
the distribution of forecasted values in individual districts, which was the ultimate
goal of the test case to be achieved.

3.2.	 Example of Data Processing with JupyQgis

To illustrate the functionality, use and role of the JupyQgis library in data pro-
cessing, selected essential fragments of the Jupyteo/Python code implementing the
described algorithm are presented below.

1.	 Import required libraries, among others jupyQgis:
In[1]:
from jupyQgis import *
import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 135

2.	 Load data from QGIS project to Pandas dataframe. It is done with jpQgis
object and getLayerTableData method, both from JupyQgis library. As it was
discussed earlier in chapter 2.2., accessing data with JupyQgis is simpler
than with PyQGIS or pure Python.

In[2]:
jpq = jpQgis(‘./data/admin_qgis84.qgs’)
dfQgis=jpq.getLayerTableData(‘powiatyWGS84’)

Out[2]:
[‘powiatyWGS84’, ‘wojewWGS84’]

3.	 Load remaining datasets. The part of the script that carries out transforma-
tion and adaptation of datasets for further processing is omitted here.

In[3]:
dfBUD = pd.read_csv(‘./data/BUILDINGS.csv’,dtype=object)
dfPOP = pd.read_csv(‘./data/PEOPLE_DENS.csv’,dtype=object)
dfSAL = pd.read_csv(‘./data/SALARIES.csv’,dtype=object)
dfPRC = pd.read_csv(‘./data/RESIDENTIAL_PRICE.csv’,dtype=object)

4.	 Calculate annual average prices for each district and merge loaded datasets.
The resulting dataframe is:

In[4]:
dfAll.head()

Out[4]:

5.	 Create and train a machine learning model using the Scikit-Learn Random
Forest Regressor. It will be used later.

In[5]:
SAMPLE_COLS = [
			 ‘KOD_TERYT’,’YEAR’,’AVG_SALARY’,’BUILDINGS’,’POP_DEN_KM’]
TARGET_COLS = [‘PRICE_RESI’]
dfeval = dfAll.sample(100)
dftrain = pd.concat([dfAll,dfeval]).
												 drop_duplicates(keep=False)
X_test = dfeval[SAMPLE_COLS]
y_test = dfeval[TARGET_COLS]
X_train = dftrain[SAMPLE_COLS]
y_train = dftrain[TARGET_COLS]
regressor = RandomForestRegressor(
										 n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)

136	 M. Bednarczyk

6.	 Validate the model.

In[6]:
cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=20)
n_scores = cross_val_score(regressor, X_train, y_train,
				 scoring=’neg_mean_absolute_error’, cv=cv, n_jobs=-1)
n_scores = absolute(n_scores)
print(‘MAE: %.3f (%.3f)’ % (mean(n_scores), std(n_scores)))

Out[6]:
MAE: 366.113 (19.537)
Accuracy: 0.9632694888641313

7.	 Predict the values of individual attributes for each district for 2020. Linear
regression was used for forecasting. For this purpose, the makePrediction ()
function was created, which automatically builds a time series separately for
each district based on the values of a given attribute in individual years, then
creates a linear regression model and returns the value forecast for the fol-
lowing year. Finally, the forecast results were combined into a single dataset
called dfPredictions.

In[7]:
dfBudProg = makePrediction(dfQgis,dfBUD,2020,’BUILDINGS’,
									 ‘BUD_2020’,’KOD_TERYT’)
dfPopProg = makePrediction(dfQgis,dfPOP,2020,’POP_DEN_KM’,
									 ‘POP_2020’,’KOD_TERYT’)
dfSalProg = makePrediction(dfQgis,dfSAL,2020,’AVG_SALARY’,
									 ‘SAL_2020’,’KOD_TERYT_WOJ’)
dfPredictions = dfBudProg.merge(dfPopProg, how = ‘inner’,
												 on=’KOD_TERYT’)
dfPredictions = dfPredictions.merge(dfSalProg, how=’left’,
												 on=’KOD_TERYT_WOJ’)
df.Predictions.head()

Out[7]:

8.	 Next, the dfPredictions dataset was used to forecast prices for a square meter
of real estate using the random forest model previously created and men-
tioned in point 5.

In[8]:
dfProgEval = dfPredictions[
							 [‘KOD_TERYT’,’SAL_2020’,’BUD_2020’,’POP_2020’]]

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 137

dfProgEval.insert(1, ‘YEAR’, 2020)
y_pred = regressor.predict(dfProgEval)
dfPredictions[‘RESI_2020’]=y_pred
dfPredictions.head()

Out[8]:

9.	 Convert the data types to prepare for loading prediction results to the
QGIS project.

In[9]:
dfPrognoseResult = dfPredicitions
dfPrognoseResult[‘SAL_2020’]=dfPrognoseResult1[‘SAL_2020’].
				 apply(float).apply(int).apply(str)
dfPrognoseResult[‘BUD_2020’]=dfPrognoseResult1[‘BUD_2020’].
				 apply(float).apply(int).apply(str)
dfPrognoseResult[‘POP_2020’]=dfPrognoseResult1[‘POP_2020’].
				 apply(float).apply(int).apply(str)
dfPrognoseResult[‘RESI_2020’]=dfPrognoseResult1[‘RESI_2020’].
				 apply(str)

10.	 Use the JupyQgis library to create columns and merge Pandas Dataframe
into QGIS table with layerMergePandasDf method from JupyQgis library.

In[10]:	
newFields = [QgsField(“SAL_2020”,QVariant.Int,”Integer”,10),
							 QgsField(“BUD_2020”,QVariant.Int,”Integer”,10),
							 QgsField(“POP_2020”,QVariant.Int,”Integer”,10),
							 QgsField(“RESI_2020”,QVariant.Double,”Double”,12,2)]
jpq.layerMergePandasDf(‘powiatyWGS84’,dfPrognoseResult,
							 newFields,’KOD_TERYT’)

11.	 Load the thematic map developed in QGIS based on the performed real
estate price forecast for 2020 to Jupyteo. First, QGIS project is opened and
available layers are listed using mentioned earlier jpQgis and listLayers.
Then layers are styled and loaded into map viewer using jpLayer object and
loadLayer2leaflet method from JupyQgis. The result is shown in Figure 9.

In[11]:
jpq = jpQgis(‘./work/data/prognose2020/prognose2020_RF.qgz’)
df=jpq.getLayerTableData(‘powiatyWGS84’)
jpq.listLayers()

138	 M. Bednarczyk

Out[11]:
[‘powiatyWGS84_POP2020’,
			 ‘powiatyWGS84_SAL2020’,
			 ‘powiatyWGS84_BUD2020’,
			 ‘powiatyWGS84_RESI2020’,
			 ‘powiatyWGS84’,
			 ‘wojewWGS84’]

In[12]:
lr = jpLayer(‘powiatyWGS84_RESI_2020’)
lr.params[‘weight’] = 1
lr.params[‘fill’]=[‘true’]
lr.params[‘fillOpacity’]=0.5
jpq.loadLayer2leaflet(lr)
lr = jpLayer(‘wojewWGS84’)
lr.params[‘weight’] = 2
lr.params[‘fill’]=[‘false’]
jpq.loadLayer2leaflet(lr)

Fig. 9. The thematic map developed in QGIS, based on the performed real estate price
forecast for 2020 – loaded in Jupyteo using the JupyQgis library`

4.	 Discussion

The work carried out in this paper suggests that the most convenient way to
combine the functionality of the QGIS system with the functionality of the Jupyteo
platform was to create a library providing a straightforward and easy-to-use API.
The created API significantly facilitates cooperation between both environments,
enabling the QGIS project to be used directly from the Jupyteo script. The interoper-
ability is two-way, which means that the user can easily read data from an existing

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 139

QGIS project, process it with tools commonly used in data science and then save the
results back to the QGIS project. The use of JupyQgis library shortens and simpli-
fies the source code of the created Python scripts in relation to the original PyQgis.
The resulting tool can be easily used and transferred as a software component of
any Python or IPython-based platform extending its functionality. Combining the
functionality of a GIS system such as QGIS with a network platform such as Jupy-
teo creates additional possibilities for analyzing and processing GIS data, especially
through:

	– online cloud data processing,
	– using modern and very efficient tools to work with big data, such as Pandas,

PySpark and others,
	– use of machine learning tools such as Scikit-learn,
	– access to data repositories offered by platforms such as Jupyteo (e.g., EO data),
	– enabling parallel processing (available in Jupyteo),
	– easy data integration from multiple sources,
	– enabling new, future solutions and tools that are not yet available by translat-

ing a large part of the functionality into processing using a constantly devel-
oping language such as Python.

In terms of existing solutions that could be adapted, JupyQgis stands out for
its functionality. Using the library involves calling the necessary objects and meth-
ods fully integrated with Jupyteo. The existing projects did not meet expectations
because they do not fully cooperate with the Jupyteo platform. Using them would
involve creating extensive scripts, which, apart from the main functionality, would
have to implement cooperation with QGIS.

One of the more difficult problems to solve was presenting spatial data in the
form of a map in a Jupyteo map viewer. Leaflet library – component used in Jupyteo
uses only one vector format, which is GeoJson. It means that all formats derived
from QGIS must be converted to it to be displayed correctly. Additionally, there is
a graphic style incompatibility between QGIS and Leaflet. This problem should be
given special attention in future work. At the moment, the JupyQgis library created
has not yet been thoroughly tested. QGIS is a complex system, which supports many
data formats. The design study and test case were based on vector spatial data. The
next step will be to develop and test cooperation with raster datasets. At this point,
there also might be a problem with converting graphic data formats.

5.	 Conclusions

The primary purpose of this work was to determine the most convenient way
to combine the functionality of the GIS (QGIS) system with the functionality of the
Jupyteo platform in one tool.

140	 M. Bednarczyk

During the works, it was found out that the existing solutions aimed at QGIS
interoperation with Jupyter did not meet most of the assumed requirements. This ap-
plies primarily to the possibility of convenient data exchange with data science-related
tools (such as Pandas or Scikit-learn), visualization in a web map viewer, or direct,
two-way access to the QGIS project (reading and writing data). The elimination of the
above-mentioned deficiencies also affects the readability of the created scripts and the
simplification of the source code, which translates into a significant work simplification.

To achieve the assumed goal, a practical attempt to solve the problem of interop-
erability between QGIS and Jupyteo was made. It was found that the most suitable
solution would be to create a proprietary library providing API for collaboration be-
tween both of the environments mentioned above. The created library meets expecta-
tions and enables efficient cooperation. This fact is supported by a practical example of
data processing using various tools presented in this article, where data from the QGIS
project was imported into a Jupyteo script. The data was easily combined with exter-
nal data sources and a forecast of the value of real estate data was performed using
machine learning algorithms. The forecast results were then transferred from Jupyteo
to QGIS, where a thematic map was created. The created map was again displayed in
Jupyteo without a problem. It can be said that the described processing chain, combin-
ing QGIS and Jupyteo in one process, has been completed. In this way, it was shown
that the JupyQgis library fulfils its role and can become another tool used in data sci-
ence. Thanks to it, it is possible to include data from QGIS for analyses in Jupyteo in
real-time, which significantly extends the existing functionality of both environments.

The problem addressed in this paper has only been partially covered in other
studies in the literature. Existing studies have offered some solutions but did not
provide satisfactory solutions. The current study identified the problems that need
to be faced when combining the functionality of an extensive desktop QGIS system
with an online platform such as Jupyteo.

The current study considers mainly loading and saving vector data, which cer-
tainly narrows the scope of problems that may still arise. In future steps, attention
should be paid to the exchange of raster data and cooperation with QGIS analytical
tools, paying particular attention to those that save the results in the QGIS project
data in real-time.

The emerging JupyQgis library will be published under an open license, which
will make the author’s contribution to the development of tools related to the pro-
cessing of spatial data with the use of GIS public.

Acknowledgements

This article has been prepared as part of the work on the project carried out at
WASAT Sp. z o.o. with headquarters in Gdańsk, Trzy Lipy 3, Poland. Special thanks
I would like to address to Wasat’s Navigation and Geoinformation Department
Manager – Daniel Zinkiewicz – for the substantive support, all comments to the text
and tips on the directions of development of the described library.

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 141

References

[1]	 Aalst W.M.P., Bichler M., Heinzl A.: Responsible Data Science. Business & In-
formation Systems Engineering, vol. 59, 2017, pp. 311–313. https://doi.org/​
10.1007/s12599-017-0487-z.

[2]	 Janowski A., Szulwic J., Tysiąc P.: Spatial Modelling in Environmental Analysis
and Civil Engineering. Applied Sciences, vol. 11(9), 2021, 3945. https://doi.org/​
10.3390/app11093945.

[3]	 Bacao F., Santos M.Y., Behnisch M.: Spatial Data Science. ISPRS Internation-
al Journal of Geo-Information, vol. 9, 2020, 428. https://doi.org/10.3390/
ijgi9070428.

[4]	 Gibert K., Horsburgh J.S., Athanasiadis I.N., Holmes G.: Environmental Data
Science. Environmental Modelling & Software, vol. 106, 2018, pp. 4–12.
https://doi.org/10.1016/j.envsoft.2018.04.005.

[5]	 Cheng Y., Zhou K., Wang J., Yan J.: Big Earth Observation Data Integration
in Remote Sensing Based on a Distributed Spatial Framework. Remote Sensing,
vol. 12, 2020, 972. https://doi.org/10.3390/rs12060972.

[6]	 Mattmann C.: A vision for data science. Nature, vol. 493, 2013, pp. 473–475.
https://doi.org/10.1038/493473a.

[7]	 Janowski A., Bobkowska K., Szulwic J.: 3d Modelling of Cylindrical-Shaped
Objects from Lidar Data – an Assessment Based on Theoretical Modelling and
Experimental Data. Metrology and Measurement Systems, vol. 25(1), 2018,
pp. 47–56. https://doi.org/10.24425/118156.

[8]	 Janowski A., Szulwic J., Ziółkowski P.: Combined Method of Surface Flow Mea-
surement Using Terrestrial Laser Scanning and Synchronous Photogrammetry.
[in:] 2017 Baltic Geodetic Congress (Geomatics): BGC Geomatics 2017: proceed-
ings: 22–25 June 2017, Gdansk University of Technology, Poland, IEEE, Piscat-
away 2017, pp. 110–115. https://doi.org/10.1109/BGC.Geomatics.2017.54.

[9]	 Ossowski R., Przyborski M., Tysiac P.: Stability Assessment of Coastal Cliffs In-
corporating Laser Scanning Technology and a Numerical Analysis. Remote Sens-
ing, vol. 11(16), 2019, 1951. https://doi.org/10.3390/rs11161951.

[10]	 Tysiac P.: Bringing Bathymetry LiDAR to Coastal Zone Assessment: A Case Study
in the Southern Baltic. Remote Sensing, vol. 12(22), 2020, 3740. https://doi.org/​
10.3390/rs12223740.

[11]	 Guo H., Nativi S., Liang D., Craglia M., Wang L., Schade S., Corban C., He G.,
Pesaresi M., Li J., Shirazi Z., Liu J., Annoni A.: Big Earth Data science: an infor-
mation framework for a sustainable planet. International Journal of Digital Earth,
vol. 13(7), 2020, pp. 743–767. https://doi.org/10.1080/17538947.2020.1743785.

[12]	 Dumitru C.O., Schwarz G., Castel F., Lorenzo J., Datcu M.: Artificial Intelli-
gence Data Science Methodology for Earth Observation. [in:] Soofastaei A. (ed.),
Advanced Analytics and Artificial Intelligence Applications, IntechOpen, London
2019. https://doi.org/10.5772/intechopen.86886.

https://doi.org/10.1007/s12599-017-0487-z
https://doi.org/10.1007/s12599-017-0487-z
https://doi.org/10.3390/app11093945
https://doi.org/10.3390/app11093945
https://doi.org/10.3390/ijgi9070428
https://doi.org/10.3390/ijgi9070428
https://doi.org/10.1016/j.envsoft.2018.04.005
https://doi.org/10.3390/rs12060972
https://doi.org/10.1038/493473a
https://doi.org/10.24425/118156
https://doi.org/10.1109/BGC.Geomatics.2017.54
https://doi.org/10.3390/rs11161951
https://doi.org/10.3390/rs12223740
https://doi.org/10.3390/rs12223740
https://doi.org/10.1080/17538947.2020.1743785
https://doi.org/10.5772/intechopen.86886

142	 M. Bednarczyk

[13]	 Artiemjew P., Chojka A., Rapiński J.: Deep Learning for RFI Artifact Recognition
in Sentinel-1 Data. Remote Sensing, vol. 13(1), 2021, 7. https://doi.org/10.3390/
rs13010007.

[14]	 Janowski A., Renigier-Biłozor M., Walacik M., Chmielewska A.: Remote Mea-
surement of Building Usable Floor Area – Algorithms Fusion. Land Use Policy,
vol. 100, 2021, 104938. https://doi.org/10.1016/j.landusepol.2020.104938.

[15]	 Soille P., Burger A., De Marchi D., Kempeneers P., Rodriguez D., Syrris V.,
Vasilev V.: A versatile data-intensive computing platform for information retrieval
from big geospatial data. Future Generation Computer Systems, vol. 81, 2018,
pp. 30–40. https://doi.org/10.1016/j.future.2017.11.007.

[16]	 Stromann O., Nascetti A., Yousif O., Ban Y.: Dimensionality Reduction and
Feature Selection for Object-Based Land Cover Classification based on Sentinel-1
and Sentinel-2 Time Series Using Google Earth Engine. Remote Sensing, vol. 12,
2020, 76. https://doi.org/10.3390/rs12010076.

[17]	 Müller M., Bernard L., Brauner J.: Moving code in spatial data infrastructures–web
service based deployment of geoprocessing algorithms. Transactions in GIS, vol. 14,
2010, pp. 101–118. https://doi.org/10.1111/j.1467-9671.2010.01205.x.

[18]	 Gomes V.C.F., Queiroz G.R., Ferreira K.R.: An Overview of Platforms for Big
Earth Observation Data Management and Analysis. Remote Sensing, vol. 12(8),
2020, 1253. https://doi.org/10.3390/rs12081253.

[19]	 Kadiyala A., Kumar A.: Applications of Python to evaluate environmental data
science problems. Environmental Progress & Sustainable Energy, vol. 36(6),
2017, pp. 1580–1586. https://doi.org/10.1002/ep.12786.

[20]	 Raschka S., Patterson J., Nolet C.: Machine Learning in Python: Main Devel-
opments and Technology Trends in Data Science, Machine Learning, and Artifi-
cial Intelligence. Information, vol. 11(4), 2020, 193. https://doi.org/10.3390/
info11040193.

[21]	 Hao J., Ho T.K.: Machine Learning Made Easy: A Review of Scikit-learn Package in
Python Programming Language. Journal of Educational and Behavioral Statis-
tics, vol. 44(3), 2020, pp. 348–361. https://doi.org/10.3102/1076998619832248.

[22]	 Bisong E.: Google Colaboratory. [in:] Building Machine Learning and Deep Learn-
ing Models on Google Cloud Platform, Apress, Berkeley 2019, pp. 59–64. https://
doi.org/10.1007/978-1-4842-4470-8_7.

[23]	 Pimentel J.F., Murta L., Braganholo V., Freire J.: A Large-Scale Study about
Quality and Reproducibility of Jupyter Notebooks. [in:] MSR 2019: 2019 IEEE/
ACM 16th International Conference on Mining Software Repositories: proceed-
ings: 26–27 May 2019, Montreal, Canada, IEEE Computer Society, Confer-
ence Publishing Services (CPS), Los Alamitos 2019, pp. 507–517. https://doi.
org/10.1109/MSR.2019.00077.

[24]	 Cook J.: Docker for Data Science: Building Scalable and Extensible Data Infrastruc-
ture around the Jupyter Notebook Server, Apress, Santa Monica 2017. https://
doi.org/10.1007/978-1-4842-3012-1.

https://doi.org/10.3390/rs13010007
https://doi.org/10.3390/rs13010007
https://doi.org/10.1016/j.landusepol.2020.104938
https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.3390/rs12010076
https://doi.org/10.1111/j.1467-9671.2010.01205.x
https://doi.org/10.3390/rs12081253
https://doi.org/10.1002/ep.12786
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.3102/1076998619832248
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/978-1-4842-3012-1
https://doi.org/10.1007/978-1-4842-3012-1

A Python Library for the Jupyteo IDE Earth Observation Processing Tool...	 143

[25]	 Rapiński J., Bednarczyk M., Zinkiewicz D.: JupyTEP IDE as an Online Tool for
Earth Observation Data Processing. Remote Sensing, vol. 11, 2019, 1973. https://
doi.org/10.3390/rs11171973.

[26]	 Fernández L., Hagenrud H., Zupanc B., Laface E., Korhonen T., Anders-
son R.: Jupyterhub at the ESS. An Interactive Python Computing Environment
for Scientists and Engineers. [in:] Proceedings of the 7th International Particle Ac-
celerator Conference (IPAC2016), Busan, Korea, 8–13 May 2016, pp. 2778–2780.
https://doi.org/10.18429/JACOW-IPAC2016-WEPOR049.

[27]	 Zuhlke M., Fomferra N., Brockmann C., Peters M., Veci L., Malik J., Reg-
ner P.: SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox.
[in:] Ouwehand L. (ed.), Sentinel-3 for Science Workshop, ESA Special Publica-
tion, vol. 734, Venice 2015.

[28]	 Grizonnet M., Michel J., Poughon V., Inglada J., Savinaud M., Cresson R.:
Orfeo ToolBox: open source processing of remote sensing images. Open Geospa-
tial Data, Software and Standards, vol. 2, 2017, 15. https://doi.org/10.1186/
s40965-017-0031-6.

[29]	 Warmerdam F.: The Geospatial Data Abstraction Library. [in:] Hall G.B., Lea-
hy M.G. (eds.), Open Source Approaches in Spatial Data Handling, Advances
in Geographic Information Science, Springer-Verlag Berlin Heidelberg 2008,
pp. 87–104. https://doi.org/10.1007/978-3-540-74831-1_5.

[30]	 Unofficial Jupyter Notebook Extensions: https://jupyter-contrib-nbextensions.
readthedocs.io [access: 30.05.2021].

[31]	 3liz/qgis-nbextension: https://github.com/3liz/qgis-nbextension [access:
30.05.2021].

[32]	 Geospatial Python Tutorial – Install Jupyter Notebook in QGIS3: https://​
lerryws.xyz/​posts/Install-Jupyter-Notebook-in-QGIS3 [access: 30.05.2021].

[33]	 PyQGIS Developer Cookbook: https://docs.qgis.org/3.22/en/docs/pyqgis_
developer_cookbook/index.html [access: 30.05.2021].

[34]	 Pandas website: https://pandas.pydata.org [access: 30.05.2021].
[35]	 Statistics Poland: https://stat.gov.pl [access: 30.05.2021].
[36]	 Renigier-Biłozor M., Janowski A., Walacik M.: Geoscience Methods in Real Es-

tate Market Analyses Subjectivity Decrease. Geosciences, vol. 9(3), 2019, 130.
https://doi.org/10.3390/geosciences9030130.

[37]	 Zydroń A., Walkowiak R.: Analiza atrybutów wpływających na wartość nieru-
chomości niezabudowanych przeznaczonych na cele budowlane w gminie Mosina
[Analysis of Factors Affecting Value of Undeveloped Plots Allocated for Buildings
Development in Mosina Municipality]. Rocznik Ochrona Środowiska, t. 15,
cz. 3, 2013, pp. 2911–2924.

[38]	 Kucharska-Stasiak E.: Odwzorowanie cech nieruchomości w cenach i skutki
dla procesu wyceny [Reflection of Real Estate Attributes in Prices and Conse-
quences for Valuation Process]. Studia i Materiały Towarzystwa Naukowego
Nieruchomości, t. 18, nr 3, 2010, pp. 7–16.

https://doi.org/10.3390/rs11171973
https://doi.org/10.3390/rs11171973
https://doi.org/10.18429/JACOW-IPAC2016-WEPOR049
https://doi.org/10.1186/s40965-017-0031-6
https://doi.org/10.1186/s40965-017-0031-6
https://doi.org/10.1007/978-3-540-74831-1_5
https://jupyter-contrib-nbextensions.readthedocs.io
https://jupyter-contrib-nbextensions.readthedocs.io
https://github.com/3liz/qgis-nbextension
https://lerryws.xyz/posts/Install-Jupyter-Notebook-in-QGIS3
https://lerryws.xyz/posts/Install-Jupyter-Notebook-in-QGIS3
https://docs.qgis.org/3.22/en/docs/pyqgis_developer_cookbook/index.html
https://docs.qgis.org/3.22/en/docs/pyqgis_developer_cookbook/index.html
https://pandas.pydata.org
https://stat.gov.pl
https://doi.org/10.3390/geosciences9030130

144	 M. Bednarczyk

[39]	 Muratorplus: Ceny mieszkań w Polsce – prognozy na 2021. https://www.
muratorplus.pl/inwestycje/inwestycje-mieszkaniowe/ceny-mieszkan-w-
2018-r-nowe-mieszkania-mocno-podrozaly-gdzie-ceny-mieszkan-wzrosly-
najbardziej-aa-BJAZ-hHVK-d4wc.html [access: 30.05.2021].

[40]	 Pracuj.pl: Ceny mieszkań w 2020 – ile średnich pensji potrzeba, aby kupić włas-
ne lokum? 6.11.2020, https://zarobki.pracuj.pl/raporty-i-trendy-placowe/
ceny-mieszkan-2020-ile-srednich-pensji-potrzeba-aby-kupic-wlasne-lokum/
[access: 30.05.2021].

https://www.muratorplus.pl/inwestycje/inwestycje-mieszkaniowe/ceny-mieszkan-w-2018-r-nowe-mieszkania-mocno-podrozaly-gdzie-ceny-mieszkan-wzrosly-najbardziej-aa-BJAZ-hHVK-d4wc.html
https://www.muratorplus.pl/inwestycje/inwestycje-mieszkaniowe/ceny-mieszkan-w-2018-r-nowe-mieszkania-mocno-podrozaly-gdzie-ceny-mieszkan-wzrosly-najbardziej-aa-BJAZ-hHVK-d4wc.html
https://www.muratorplus.pl/inwestycje/inwestycje-mieszkaniowe/ceny-mieszkan-w-2018-r-nowe-mieszkania-mocno-podrozaly-gdzie-ceny-mieszkan-wzrosly-najbardziej-aa-BJAZ-hHVK-d4wc.html
https://www.muratorplus.pl/inwestycje/inwestycje-mieszkaniowe/ceny-mieszkan-w-2018-r-nowe-mieszkania-mocno-podrozaly-gdzie-ceny-mieszkan-wzrosly-najbardziej-aa-BJAZ-hHVK-d4wc.html
https://zarobki.pracuj.pl/raporty-i-trendy-placowe/ceny-mieszkan-2020-ile-srednich-pensji-potrzeba-aby-kupic-wlasne-lokum/
https://zarobki.pracuj.pl/raporty-i-trendy-placowe/ceny-mieszkan-2020-ile-srednich-pensji-potrzeba-aby-kupic-wlasne-lokum/

