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Abstract: Vegetation mapping is an active research area in the domain of remote sensing. 
This study proposes a methodology for the mapping of vegetation by integrat-
ing several vegetation indices along with original spectral bands. The Land Use 
Land Cover classification was performed by two powerful Machine Learning 
techniques, namely Random Forest and AdaBoost. The Random Forest algo-
rithm works on the concept of building multiple decision trees for the final 
prediction. The other Machine Learning technique selected for the classification 
is AdaBoost (adaptive boosting), converts a set of weak learners into strong 
learners. Here, multispectral satellite data of Dehradun, India, was utilised. The 
results demonstrate an increase of 3.87% and 4.32% after inclusion of selected 
vegetation indices by Random Forest and AdaBoost respectively. An Over-
all Accuracy (OA) of 91.23% (kappa value of 0.89) and 88.59% (kappa value 
of 0.86) was obtained by means of the Random Forest and AdaBoost classifi-
ers respectively. Although Random Forest achieved greater OA as compared 
to AdaBoost, interestingly AdaBoost provided better class-specific accuracy 
for the Shrubland class compared to Random Forest. Furthermore, this study 
also evaluated the importance of each individual feature used in the classifi-
cation. Results demonstrated that the NDRE, GNDVI, and RTVIcore vegeta-
tion indices, and spectral bands (NIR, and Red-Edge), obtained higher impor-
tance scores.
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1. Introduction

In recent years, with the availability and accessibility of remote sensing data, 
a huge variety of applications like crop type classification, vegetation mapping, 
forestry, precision agriculture, landslide susceptibility mapping, built up extrac-
tion, etc. have attracted the attention of multidisciplinary researchers [1–8]. Vege-
tation mapping is one of the essential application needs which has to be addressed 
effectively for overall environmental monitoring [8]. The utilization of remotely 
sensed data is the optimal way for vegetation mapping because of the free availa-
bility of medium and coarser spatial resolution data, having different spatial and 
spectral properties, cost effective and less time consuming in comparison to tra-
ditional field survey methods [7, 8]. Quantifying vegetation provides a valuable 
information for socio-economic applications. It is essential to obtain the accurate 
information about vegetation cover for various vegetation restoration and protec-
tion schemes.

In the past decade, various Machine Learning techniques such as Artificial Neu-
ral Network (ANN), k-Nearest Neighbor (k-NN), Random Forest, Support Vector 
Machine (SVM), Rotation Forest, various boosting techniques (AdaBoost, Schotostic 
Gradient Boosting etc.) have attracted considerable interest from multidisciplinary 
researchers as well as within the remote sensing community because these classifi-
ers provide high classification accuracy and are robust to noise [2–8]. The ensemble 
classifier is a kind of Machine Learning method which consists of a number of base 
classifiers and combines their prediction by means of some voting scheme or mech-
anism. The basic concept behind an ensemble classifier makes the assumption that 
a combination of multiple base classifiers provides better prediction results as com-
pared to a single classifier [10–12]. Random Forest is one popular ensemble method 
used for a variety of remote sensing applications like landslide susceptibility map-
ping [5], vegetation mapping [2, 4, 7, 12], ecotope mapping [1], land cover classifi-
cation [3], etc. AdaBoost is a popular boosting technique proposed by Freund and 
Schapire [13], and this algorithm enhances the performance of base learner or weak 
models by converting them into the strong learner or models [8, 14].

Optical remote sensing data are the most widely used data types for a variety of 
agricultural mapping and monitoring applications [4, 8, 12, 14–18]. Remote sensing 
data have been used successfully for other challenging applications such as drought 
identification and analysis [19, 20]. Rotjanakusol and Laosuwan [19] carried out 
a study to analyze droughts using Terra/MODIS data for the time duration of one 
decade. Another study utilized Landsat and NDVI for drought detection [20]. How-
ever, some studies in the domain of agriculture mapping have been carried out us-
ing Synthetic Aperture Radar (SAR) and hyperspectral data. Chan and Paelinckx [1] 
carried out a study for classification using hyperspectral data (Airborne HyMap) at 
the study site of Belgium. The results of this study indicates that the AdaBoost clas-
sifier and Random Forest achieved nearly similar classification accuracy and both 



Integrating Vegetation Indices and Spectral Features for Vegetation Mapping... 59

ensemble classifiers outperformed Artificial Neural Network (ANN). Tigges et al. [4] 
utilized multispectral RapidEye data for vegetation mapping in an urban environ-
ment. This study utilized multi-temporal data for vegetation classification and the 
results demonstrated that the Red-Edge information is beneficial for class separa-
bility. Schuster et al. [15] examined the potential of the Red-Edge channel using 
RapidEye data for land use classification for a study area located in western Berlin 
(Germany). In this study, SVM and Maximum Likelihood Classifiers (MLC) were 
employed. This study demonstrated that the additional information provided by 
Red-Edge band contributed significantly to improving the accuracy of classification, 
particularly for vegetation classes. Another study performed by Inglada et al. [16] 
implemented supervised classification techniques to produce accurate crop maps 
on a global scale. This study used high-resolution optical imagery (multisensory 
data SPOT4, Landsat-8, RapidEye). Twelve different sites were selected all over the 
world. In this study, the selected test sites had different characteristics, so the out-
come of the study may apply to different types of landscape. The results show that 
the RF classifier achieved maximum accuracy for most of the sites. Sonobe et al. [17] 
carried out a study for mapping of crops using Landsat-8 OLI data by employing 
multi-Grained Cascade Forest (deep forest), CART, and RF classifiers. In this study, 
57 spectral indices have been computed on Landsat-8 data and evaluated their po-
tential in crop mapping at Hokkaido (Japan). The results show that maximum accu-
racy is achieved after the inclusion of spectral indices by RF followed by deep forest. 
In the literature it is clear that various vegetation indices are used for a variety of 
application using remotely sensed data [21–26].

Kim and Yeom [27] carried out a study to evaluate the sensitivity of vegetation 
indices on crops (three paddy rice classes) using RapidEye data of two different 
seasons. The results of the study have shown that NDVI and EdgNDVI were most 
appropriate vegetation indices (VI) to differentiate between the selected crops. An-
other study performed by Ustuner et al. [28] utilized RapidEye data for crop classi-
fications using the SVM classifier. This study used three VI namely NDVI, GNDVI 
and NDRE. The results indicated that the highest Overall Accuracy (OA) of 87.46% 
was obtained by including all three VI. Furthermore, the authors claim that NDRE VI 
contributed most in terms of the classification accuracy as compared to other select-
ed indices. Otunga et al. [29] evaluated the potential of Red-Edge data from two 
satellites i.e., RapidEye and Sentinel-2, to distinguish grass (festuca C3). This study 
used NDVI and NDRE VI and Maximum Likelihood Classifier (MLC) to classify 
grass species. The results have shown that the integration of Red-Edge enhances 
the accuracy for RapidEye (+4.76%) and Sentinel-2 (+5.95%) satellite data. Further-
more, the integration of NDVI and NDRE is beneficial to classify grass species more 
accurately. Peng et al. [30] combined two satellite data (RapidEye and GF-2) to map 
mangrove species. The authors used three ensemble classifiers i.e., AdaBoost, Ran-
dom Forest (RF) and Rotation Forest (RoF). The results demonstrated that RF and 
RoF performed better in comparison to the AdaBoost classifier.
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The literature indicates that ensemble techniques provide excellent classifica-
tion results, however, the utilization of boosting methods is limited for applications 
such as vegetation mapping and monitoring. Therefore, this study aims to examine 
the potential of boosting methods (AdaBoost), specifically for mapping vegetation 
classes and comparing the statistical results with another popular ensemble method 
i.e., Random Forest. In addition, this study will also analyse the potential of several 
spectral indices for vegetation classes within the selected study area. Furthermore, 
in order to obtain optimal results in terms of classification accuracies, optimization 
has been carried out for the tuning parameters associated with both of the classifiers.

2. Study Area

The selected study area is located in the Dehradun district of Uttarakhand 
state in India (Fig. 1). This study region covers about 55.224 km2 with upper left 
30°18′2.46″ N and 78°2′7.21″ E to lower left 30°14′17.68″ N and 78°7′2.81″ E. The data 
used consists of a RapidEye satellite multispectral image acquired on 7 March 2013. 
RapidEye represents a constellation of five satellites and provides images in five 
optical bands (Tab. 1) within the wavelength range of 400–850 nm. The RapidEye 
satellite provides multispectral data, as well as good spatial resolution (5 m). An-
other advantage of RapidEye is that it includes a Red-Edge band, which provides 
additional information that is useful for vegetation mapping [14]. With such proper-
ties, RapidEye represents a good option for vegetation mapping. The key features of 
RapidEye imagery are shown in Table 1.

Table 1. Charactertics of the RapidEye satellite

Characteristics Details

Number of satellites 5

Orbit altitude 630 km (Sun-synchronous orbit)

Sensor type Multi-spectral push broom imager

Swath width 77 km

Spectral channels or bands

Blue (440–510 nm)
Green (520–590 nm)
Red (630–685 nm)
Red-Edge (690–730 nm)
NIR (760–850 nm)

Ground sample distance 6.5 m

Pixel size 5.0 m

Revisit time Daily (off-nadir; always less than 20°) / 5.5 days (nadir)

Dynamic range 12 bits
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Fig. 1. Selected study area located in India
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3. Methodology

For this study, the methodology adopted is depicted in Figure 2, which repre-
sents the complete workflow of the study.

In order to obtain classification maps, first the stacking operation was per-
formed to prepare the data, which consists of five spectral bands. Then, subset com-
putation was done to get the selected study area. Then computation of vegetation 
indices (VI) was done.

Vegetation indices are commonly computed using the reflectance of two or 
more spectral bands. Vegetation indices are widely used to obtain quantitative 
information about the biophysical variable of vegetation using remotely sensed 
data [17]. The importance of VI has been recognized by many studies for the classifi-
cation of crops [15, 17, 18]. In this study, six vegetation indices have been computed 
using spectral bands of RapidEye. Vegetation indices and their formulas are listed 
in Table 2. After the computation of selected indices, a final dataset was prepared, 
consisting of both the selected VIs (the six listed in Table 2) and spectral bands.

For classification purposes, the Random Forest and AdaBoost methods were 
implemented. More precisely, the research design was performed using following 
steps:

Step 1. Input data preparation includes several operations. Selection of study area 
followed by a stacking operation. The stacking operation was performed in 
ArcGIS software by combining all five spectral bands (Red, Green Blue, Red-
Edge, NIR). Thereafter, a subset operation was performed in ArcGIS to ob-
tain the desired dataset (Spectral bands).

Step 2. Computation of the vegetation indices (NDVI, NDRE, GNDVI, SR-RE, MTVI2, 
RTVIcore using the spectral bands from the RapidEye satellite. Computation 
of the VI was performed in the R Programming Environment. Preparation of 
second dataset (spectral + vegetation indices).

Step 3. Preparation of complete reference sample datasets by means of the stratified 
random sampling approach.

Step 4. Implementation and parameter optimization of both the Machine Learning 
models (Random Forest and AdaBoost) in the R programming environment. 
Partition of reference data, 70% data was used for training and 30% for test-
ing and training both classifiers.

Step 5. Prediction by both Machine Learning classifiers on unseen datasets and as-
sessment of accuracy using various accuracy measures. Computation of the 
importance score for vegetation classes.

Step 6. Resultant accuracy measures and classified Land Use Land Cover (LULC) 
maps obtained by both the classifiers.
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Table 2. Used vegetation indices along with their formulas

No. Vegetation indices Acronym Formulas

1 Normalized Difference 
Vegetation Index NDVI (NIR − R)/(NIR + R)

2 Normalized Difference 
Vegetation Index – Red-Edge NDRE (NIR − RE)/(NIR + RE) 

3 Green Normalized Difference 
Vegetation Index GNDVI (NIR − G)/(NIR + G) 

4 Red-Edge Simple Ratio SR-RE NIR/RE

5 Modified Triangular 
Vegetation Index MTVI2

6 Red-Edge Triangular 
Vegetation Index (core only) RTVIcore 100(NIR − RE) − 10(NIR − G)

( )2

1.5[1.2(NIR G) 2.5(R G)]

(2RNIR 1) 6NIR 5 (R) 0.5

− − −

+ − − −

Fig. 2. Classification process flow methodology
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3.1. Random Forest Classifier

The Random Forest classifier has been applied successfully to various kinds of 
classification problem using a variety of remotely sensed data. A number of studies 
have indicated that Random Forest produces excellent classification results [7, 8, 11]. 
Random Forest is a kind of ensemble approach and was proposed by Breiman [10]. 
This method works on the concept of bagging or bootstrap aggregation. This tech-
nique builds multiple decision trees using bootstrap samples with replacement pol-
icy. The predictive performance of Random Forest depends on the individual tree 
used to build the forest. In this method, each tree contributes its vote for the classi-
fication, whereas the final prediction is made by a voting scheme. Decision tress in 
the Random Forest are decorrelated because this method selects features randomly 
at each node, which increases the prediction efficacy of this method. The Random 
Forest algorithm also work well when the input data is of a higher dimension, at 
the same time this method has a low tendency to overfitting [10]. RF has two tuning 
parameters, namely Mtry and ntree. The Mtry parameter represents the number 
of features used to split the node, whereas the ntree parameter indicates the total 
number of trees.

3.2. AdaBoost Classifier

AdaBoost is an ensemble Machine Learning method which comes under the 
category of boosting approach and was introduced by Freund and Schapire [13]. 
The AdaBoost classifier works on the principle of constructing strong classifiers us-
ing weak classifiers. Here, a strong classifier is formed by combining basic or weak 
classifiers. The algorithm work on the concept of an adaptive resampling method 
to select training samples. Initially, equal weights are assigned to all samples. At 
each iteration of the algorithm, it assigns weight to the samples in such a manner 
that the coming integration emphasizes on the samples which were not accurately 
classified by the previous attempt and the final outcome is the weighted sum of 
the prediction [1]. The AdaBoost Machine Learning technique has been used for 
the classification of a variety of applications, however, the evaluation for this algo-
rithm for vegetation mapping is limited. The AdaBoost classifier has two parame-
ters, namely Mfinal and maxdepth. Mfinal indicates the total number of trees used to 
build the final model whereas the maxdepth parameter represents maximum depth 
of any node.

In this study, reference data have been collected by field visits as well as us-
ing Google Earth imagery for reference sample generation. In this work, a stratified 
random sampling approach has been employed. Both the selected classifiers i.e., 
Random Forest and AdaBoost, have been trained using labelled samples. The as-
sessment of accuracy is performed by calculating the most commonly used accuracy 
measures i.e., Overall Accuracy (OA) and kappa coefficient. Furthermore, to evalu-
ate the classifier’s performance on each individual class, two other popular accuracy 
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measures i.e., Producer Accuracy (PA) and User Accuracy (UA) measures have been 
used. For the implementation purposes of both the classifiers, the R programming 
language has been used.

4. Results and Discussion

In this research work, vegetation mapping was performed using multispectral 
satellite data of Dehradun, India. Here, with an objective of achieving optimal clas-
sification results, the collective benefits of spectral features and vegetation indices 
were utilized to train the selected Machine Learning techniques (Random Forest and 
AdaBoost). In this study, two datasets were prepared, with the first dataset consist-
ing of only spectral bands. The second dataset was formed by combining the original 
spectral bands and computer vegetation indices. Thus, the first dataset consists of 
five spectral features and the second dataset includes a total of eleven features. In 
order to perform the supervised classification, the stratified random sampling tech-
nique was adopted for training and testing samples, these samples were selected in 
such a manner that they are mutually exclusive. In this study, parameter optimiza-
tion is done in order to utilize the classifier’s maximum potential for accurate clas-
sification results. The optimal value of tuning parameters has been determined and 
used to build Machine Learning models for the final predictions (Tab. 3).

Table 3. Optimal values of parameters for Random Forest and AdaBoost models

Dataset Random Forest AdaBoost

Spectral bands Mtry = 2, ntree = 200 maxdepth = 3, mfinal = 150

Spectral bands + vegetation indices Mtry = 3, ntree = 350 maxdepth = 3, mfinal = 100

The results of this investigation revealed that the Random Forest method ob-
tained a higher OA as compared to the AdaBoost ensemble classifier. This observa-
tion is similar for both datasets (spectral data and spectral bands + vegetation indi-
ces). More specifically, Random Forest achieved +3.09% higher OA and an increase 
of +0.03 in kappa value as compared to AdaBoost classifier using only spectral data. 
For the second dataset (spectral + vegetation indices), the Random Forest classifier 
has shown an increase of +2.64% and +0.04 in OA and kappa value respectively in 
comparison to the AdaBoost classifier.

First, we discuss the outcomes of both the classifiers using spectral data (Tab. 4). 
The results have shown that using only spectral data, an OA of 87.36% with a kappa 
value of 0.85 and 84.27% with a kappa value of 0.82 has been achieved by Random 
Forest and AdaBoost classifiers respectively. The class-specific accuracy measures in 
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terms of UA and PA are listed in Table 4. This study mainly focused on vegetation 
mapping using multispectral RapidEye data. A total number of six LULC classes, 
namely Forest, Sand area, Crop land, Fallow land, Shrub land, and Built-up have 
been considered for classification. As far as the class-specific performance is con-
cerned, three classes come under the umbrella of vegetation i.e., Forest, Crop land, 
and Shrub land. Therefore, the class-specific accuracy is only discussed regarding 
these vegetation classes.

Table 4. Accuracy measures obtained by Random Forest and AdaBoost classifiers  
using only spectral information

LULC classes
Random Forest AdaBoost

UA PA UA PA

Forest 90.76 88.01 85.30 82.17

Sand area 86.08 85.14 83.93 84.54

Crop land 87.88 89.45 79.14 83.16

Fallow land 93.77 90.23 90.36 87.29

Shrub land 88.78 86.95 90.18 87.42

Built-up 80.32 84.45 78.12 81.34

OA 87.36 84.27

Kappa 0.85 0.82

The results demonstrated that the Random Forest classifier achieved UA 
of 90.76% for Forest, 87.88% for Crop land and 88.78% for Shrub land. The PA 
of 88.01%, 89.45% and 86.95% were obtained for Forest, Crop and Shrub land respec-
tively. The AdaBoost classifier obtained UA of 85.30% for Forest, 79.14% for Crop 
land and 90.18% for Shrub land. The PA obtained by AdaBoost is 82.17%, 83.16% 
and 87.42% for Forest, Crop and Shrub land respectively.

Table 5 demonstrate the results obtained by Random Forest and AdaBoost 
classifiers using second dataset i.e., the integration of vegetation indices and spec-
tral bands together. It was found that an OA of 91.23% with a kappa value of 0.89 
and 88.59% with a kappa value of 0.85 was achieved by the Random Forest and Ad-
aBoost classifiers respectively (Tab. 5). The results of this investigation have shown 
that both classifiers performed well, however, Random Forest outperformed Ada-
Boost ensemble method for both datasets. Random Forest achieved a 2.64% higher 
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classification accuracy and 0.04 higher value of kappa coefficient in comparison to 
AdaBoost. The main objective of this study was to map vegetation using multispec-
tral RapidEye data. As discussed above, the class-specific performance is evaluated 
for three classes in terms of vegetation i.e., Forest, Crop land and Shrub land. There-
fore, the class-specific accuracy is discussed regarding these vegetation classes only. 
The Random Forest classifier achieved UA of 96.53% for Forest, 91.52% for Crop 
land and 92.59% for Shrub land. Whereas, the PA of 93.05%, 96.77% and 90.61% was 
obtained for Forest, Crop land and Shrub land respectively. The AdaBoost classifier 
obtained a UA of 91.80% for Forest, 87.12% for Crop land and 94.28% for Shrub land. 
The PA obtained by AdaBoost is 86.07%, 90.01% and 92.37% for Forest, Crops and 
Shrub land respectively.

Table 5. Accuracy measures obtained by Random Forest and AdaBoost  
classifiers by integrating selected vegetation indices

LULC classes
Random Forest AdaBoost

UA PA UA PA

Forest 96.53 93.05 91.80 86.07

Sand area 89.16 85.03 86.79 89.06

Crop land 91.52 96.77 87.12 90.01

Fallow land 93.65 96.92 92.03 90.45

Shrub land 92.59 90.61 94.28 92.37

Built-up 83.27 86.91 80.07 83.62

OA 91.23 88.59

Kappa 0.89 0.85

The findings of this study clearly demonstrated the positive impact of including 
vegetation indices in the classification process. The results have shown an increase 
of 3.87% in OA after inclusion of selected vegetation indices by Random Forest clas-
sifier. The AdaBoost classifier showed a rise of 4.32% after integrating vegetation 
indices with spectral bands. For the vegetation classes it has been observed that ac-
curacies of all the considered LULC classes have been increased after the inclusion 
of vegetation indices. Furthermore, it has been found that the class specific accura-
cies of vegetation classes (Forest, Crop land and Shrub land) have been increased 
significantly.
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In order to perform the in-depth evaluation, we have analyzed the impact of 
integration of vegetation indices on class-specific accuracies for both the classifiers. 
It was found that Random Forest obtained UA of 96.53% and PA of 93.05% for Forest 
by integrating vegetation indices. More specifically, for the Forest class UA and PA 
increased by +5.77% and +5.04% respectively after inclusion of vegetation indices. 
For Crop land, UA and PA of 91.52% and 96.77% has been obtained, which indicates 
an increase of 3.64% and 6.54% in the value of UA and PA respectively. For Shrub 
land, the value of UA and PA values obtained were 92.59% and 90.61% respectively, 
which is 3.81% (UA) and 3.66% (PA) higher as compared to spectral data only.

The AdaBoost classifier mapped forest with the UA of 91.80% and PA of 86.07% 
by combining spectral bands and vegetation indices. The results indicate that, in 
comparison with spectral data, UA increased by 6.50% whereas PA increased 
by 3.90% for the Forest class. Crop land is classified with UA of 87.12% and PA 
of 90.01%, which indicates an increase of 7.98% in the value of UA and 6.85% in the 
value of PA after the inclusion of vegetation indices. For Shrub land, the UA and 
PA values are 94.28% and 92.37% respectively. It can be seen from the outcome of 
both datasets that an increase of 4.10% in the value of UA and 4.95% in the value 
of PA were achieved for shrub land class after including vegetation indices in the 
input dataset. It can be observed from the classification measures that the accuracies 
(UA and PA) of all the considered LULC classes have been increased by including 
selected vegetation indices in the classification procedure (Tabs. 4, 5). A similar trend 
can be observed for both the selected classifiers (Random Forest and AdaBoost). 
Furthermore, it was found that the maximum positive impact of vegetation indices 
is on vegetation classes i.e., Forest, Crop and Shrub land using Random Forest, with 
the highest accuracy enhancement of 6.54% in the value of PA reported for the Crop 
class. Whereas, AdaBoost produced the highest accuracy enhancement of 7.98% 
in UA for the Crop class.

If we compare the outcomes of this study with previous ones, Chan and Pa-
elinckx [1] demonstrated that the AdaBoost classifier and Random Forest obtained 
an approximately similar classification accuracy. In contrast, Inglada et al. [16] 
found that the Random Forest classifier achieved maximum accuracy for most of the 
selected study sites. Sonobe et al. [17] also observed that RF outperformed in terms 
of crop mapping using Landsat-OLI data. In contrast to the study [1], our results 
indicated that Random Forest performed better for both datasets, which is similar to 
the findings observed by Inglada et al. [16] and Sonobe et al. [17]. In context to the in-
tegration of vegetation indices, previous studies also observed that the integration of 
vegetation indices is beneficial for classification, which is similar to the observation 
of our study. Elsewhere in the literature, the study performed by Kim and Yeom [27] 
for classification of three paddy rice classes, Ustuner et al. [28] for crop classification, 
Otunga et al. [29] to distinguish grass (festuca C3) found that integration of veg-
etation indices improves classification accuracy. Therefore, based on the obtained 
statistical results it can be concluded that inclusion of vegetation indices improves 
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the classification results of all vegetation classes significantly. LULC maps obtained 
by AdaBoost and Random Forest integrating spectral bands and vegetation indices 
are shown in Figures 3 and 4 respectively.

Fig. 3. Classification results obtained by the AdaBoost classifier

Fig. 4. Classification results obtained by the Random Forest classifier
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As discussed in the methodology section, six vegetation indices computed us-
ing spectral bands (Tab. 2) and incorporated in the second dataset. Therefore, a total 
number of eleven features were used to perform the classification. In order to extend 
the evaluation procedure, feature importance have been computed for each consid-
ered feature for all vegetation classes i.e., Forest, Crop and Shrub land. The results 
of feature importance are based on Mean Decrease Gini Score [26]. The importance 
graphs for Forest, Crop land and Shrub land is shown in Figures 5a, b, and c respec-
tively. It was found that for all the vegetation classes, different features obtained 
different importance measure. The results indicate that NDRE obtained highest im-
portance for the Forest class, and the NIR band had the second highest importance. 
For Crop land, the maximum importance is reported by GNDVI followed by NDRE. 
In the case of the shrub class, NDRE and NDVI are the most important features. 
A study performed by Ustuner et al. [28] also revealed that NDVI, GNDVI and 
NDRE are important vegetation indices for the classification of crops. Apart from 
the discussed features in this study, Red-Edge, NIR, Green and RTVIcore also ob-
tained higher importance. Furthermore, it was found that the Blue, Red and SE-RE 
Vegetation Index spectral bands obtained a minimum importance score.

Fig. 5. Feature importance graph for Forest (a), Crop land (b) and Shrub land (c)

a) b)

 c)
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5. Conclusion

In this study, vegetation mapping was performed using multispectral RapidEye 
imagery by combining several vegetation indices and spectral bands. In this investi-
gation, the Random Forest and AdaBoost methods were considered for classification 
purposes.

The major findings of this study are listed below:
 – Results demonstrated that Random Forest performed better in terms of OA 

and kappa value for both the datasets. The Random Forest classifier has 
shown a rise of +3.09% and +2.64% in OA compared to AdaBoost for spectral 
data and integrated spectral bands plus vegetation indices.

 – The inclusion of vegetation indices has a significant positive impact on classi-
fication. The highest OA of 91.23% and 88.59% has been obtained by Random 
Forest and AdaBoost classifier respectively using spectral bands plus vege-
tation indices.

 – The results have shown a rise of +3.87% and +4.32% in OA after the inclusion 
of selected vegetation indices in Random Forest and AdaBoost respectively.

 – For class-specific accuracy, Random Forest reported a maximum increase 
of +6.54% in the value of PA for the Crop class while AdaBoost produced the 
highest accuracy enhancement of +7.98% in UA for Crop land.

 – Although Random Forest achieved greater OA as compared to AdaBoost, 
interestingly, for the classes of Shrub land and sand area AdaBoost provided 
better class-specific accuracy (UA and PA) compared to Random Forest.

 – Furthermore, this study also evaluated the importance of each individual fea-
ture used in the classification. The results of the importance measure clearly 
indicated that vegetation indices such as NDRE, GNDVI, RTVIcore, are the 
most important features for the target classes.

 – Feature importance results also revealed that spectral bands NIR and Red-
Edge bands contributed more for the classification in comparison to other 
spectral bands.

 – A future scope for research may include the in-depth evaluation of other en-
semble classification techniques and the evaluation of their performance for 
a specific class.
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