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Abstract: Geological mapping faces substantial challenges due to inaccessible terrains, 
labor-intensive field methods, and potential interpretative errors. This study 
proposes an innovative approach that leverages automatic lithology classifica-
tion using multispectral Sentinel-2A (10 m) and high-resolution panchromatic 
ALOS PRISM L1B (2.5 m) images. Applied to the Tagragra d’Akka inlier of 
the Anti-Atlas region, the methodology enhances spatial resolution through 
pansharpening, followed by unsupervised segmentation. The segmented im-
ages are classified using support vector machines (SVMs) (supervised learning 
algorithms) to distinguish the lithological units. Achieving an 86% overall ac-
curacy and an 84% kappa coefficient, the approach demonstrated robust per-
formance and surpassed conventional techniques. The integration of machine 
learning and remote sensing offers a promising frontier for geological map-
ping – particularly in regions like the Tagragra d’Akka inlier. This study marks 
a significant advancement in automating lithological mapping, with implica-
tions for geological research, resource management, and hazard assessment. 
Automated techniques in geological cartography significantly enhance map-
ping accuracy and efficiency. Future studies should explore additional data 
sources and machine- learning algorithms to refine lithological classification 
and validate these methods across diverse geological settings.
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1. Introduction

Historically, classical geological mapping has relied heavily on surveyed geo-
logical cross-sections and in-field observations, inevitably leading to vulnerability to 
human errors. The prevalence of traditional manual methods in this process made 
mapping susceptible to inaccuracies, subsequently influencing the accuracy of the 
produced maps [1, 2].

The challenges of geological mapping are compounded by the presence of hard-
to-reach areas, such as rugged terrains or dense vegetation covers [2]; these hinder 
geologists from conducting in-depth studies and collecting comprehensive data. 
These areas become sources of uncertainty and potential errors in the produced 
geological maps. Furthermore, the subjective nature of geological surveys further 
complicates mapping efforts, as different geologists may interpret and document 
features differently based on their individual perspectives, experiences, and exper-
tise. This subjectivity introduces variability into the collected data, leading to dis-
crepancies in identifying lithological extensions, boundaries, and structural details.

On another level, spectral imagery emerges as a promising solution for over-
coming the limitations that are associated with precision, cost, time, and logistics 
constraints, which are inherent in traditional in-field geological mapping across ex-
tensive regions [3–5].

Moreover, the combination of machine learning and remote sensing has proven 
to be important in many applications that require massive amounts of spectral and 
spatial data, which are crucial for rapid information extraction. Machine learning 
relies on algorithms that are implemented through computer systems, computer vi-
sion, and deep-learning methods to systematically collect and identify features in 
a given environment.

Various machine-learning algorithms such as artificial neural networks (ANNs), 
support vector machines (SVMs), self-organizing maps (SOMs), decision trees (DTs), 
random forests (RFs), case-based reasoning (CBR), neuro-fuzzy systems (NF), ge-
netic algorithms (GA), and multivariate adaptive regression splines (MARS) [6–14], 
have demonstrated their efficiency in significantly enhancing geospatial analyses. 
These algorithms contribute to tasks such as object classification, the identification 
of temporal changes, data fusion, cloud removal, geometric correction, and spectral 
analysis from satellite or aerial images [15].

The integration of remote sensing and machine-learning algorithms in geo-
science contributes widely to the accuracy or improvement of geological mapping, 
particularly focusing on handling large data sets and extracting the finest lithologi-
cal classes while respecting the complex nature of geological information [5].

The evolution of geological mapping has been significantly driven by advances 
in remote-sensing technologies [16–18], marking a transformative era in lithological 
mapping. Remote sensing provides a comprehensive and integrated lateral analysis of 
the relationships among various geological structures [2]. The use of high-resolution 
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multispectral data coupled with sophisticated digital image- processing capabilities 
such as object-based image analysis (OBIA) has greatly expanded the potential of 
remote sensing [19]. This improvement has facilitated the precise delineation of lith-
ological contacts and geological structures with high precision [2, 20].

Spectral data that is collected from spaceborne sensors (primarily, widely accessi-
ble images like Landsat [5 TM, 7 ETM+, 8 OLI, and 9], ASTER, and Sentinel-2 [19]), have 
found applications that have extended the delineations of the structures and discrimi-
nations of rock and soil types [21–24], facilitated mineral-resource exploration (locating 
economic mineral deposits, identifying oil reservoirs, and detecting water resourc-
es) [25–32], and aided in understanding phenomena such as geological disasters [33].

This study is the first to exploit multispectral images from Sentinel-2A, together 
with the high-resolution ALOS PRISM L1B (2.5 m) panchromatic images for lithol-
ogy detection. This combination offers exceptional data quality, opening up new 
perspectives for more-precise and -detailed geological exploration. By integrating 
remote sensing and machine learning, this research actively contributes to the devel-
opment of lithology detection on an unprecedentedly detailed scale. These advance-
ments offer considerable potential for natural-resource management, environmental 
planning, and informed decision-making in the field of geology.

Numerous studies have been conducted in the field of supervised litholog-
ical classification, each applying specific algorithms such as support vector ma-
chines [34–37], random forests (RFs) [38, 39], boosting trees [40–42], artificial neural 
networks (ANNs) [43–45], etc. Among these, SVM is the most popular algorithm 
for lithology identification and has been extensively studied. For example, Al-Anazi 
and Gates [34] proposed an SVM-classification formulation with a feature-selection 
technique based on fuzzy theory. Their results showed that the performance of the 
SVM-based method was superior to that of discriminant analysis and probabilis-
tic NN. In 2014, Salehi and Honarvar [46] proposed a model that combined a least-
squares support vector machine and coupled simulated annealing to predict litholo-
gy. In a study by Sebtosheikh and Salehi [35], an SVM classifier was used to predict 
lithology from inverted seismic data and petrophysical logs [47].

To address the current limitations in lithological mapping, the primary objec-
tives of this study were as follows: (1) to enhance lithological-detection accuracy 
by using a combined SVM and remote-sensing approach; (2) to evaluate the effec-
tiveness of pansharpened Sentinel-2A and ALOS PRISM L1B images for fine-scale 
lithological discrimination; and (3) to contribute to a more detailed and precise 
geological- exploration framework.

2. Materials and Methods

Figure 1 illustrates the methodology applied and the steps followed in pre-
sented study.
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2.1. Study Region
Geographical Setting
The Tagragra d’Akka inlier is a unique geological structure that is located in 

southwestern Morocco in the Western Anti-Atlas mountain range (as shown in Fig-
ure 2). Dating back to the Paleoproterozoic era, it is situated between the Tata and 
Tiznit Provinces – approximately 260 km southeast of Agadir. This inlier is charac-
terized by the presence of a set of metamorphic and igneous rocks that are exposed 
at the surface that date back to the Paleoproterozoic era; this provides an opportuni-
ty to study their compositions and structures [48–50].

Located at an average altitude of 933 m, the inlier features a relief that is char-
acterized by peaks and passes that range between 900 and 1318 m as well as moun-
tains and valleys. This barren region experiences an arid Saharan climate, resulting 
in high temperatures throughout the year and limited precipitation (not exceeding 
100 mm per year). This low rainfall contributes to limited availability to water – both 
on the surface and in the groundwater [51].

ALOS PRISM L1B
2.5 m PAN band

Sentinel-2A
10 m MS images

Color Normalized
Spectral Sharpening

Multispectral high-res
2.5 m bands

Band Ratio calculus

BandRatio1 = B 04 / B 03 BandRatio2 = B 11 / B 02 BandRatio3 = B 12 / B 04

Principal Component Analysis

Sampling data PCA issued image

Data splitting Zonal statistics
calculus

Mean Shift
segmentation
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dataset (30%)

Training
dataset (70%)

Segmentation results
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Fig. 1. Lithology-detection model-flow diagram
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From a scientific perspective, the Tagragra d’Akka inlier holds crucial impor-
tance as a privileged window for studying the formation of the Anti-Atlas Moun-
tain range, thereby deepening the understanding of the geological processes behind 
this mountainous structure. As a repository of notable mineral resources (including 
gold and copper deposits), it also substantially contributes to advancing knowledge 
about the genesis and exploitation of these mineral deposits. Lastly, the inlier serves 
as a conducive environment for experimenting with innovative technologies such as 
remote sensing due to the distinctive features of its terrain (marked by the absence 
of vegetation and limited alteration). This opens the door to significant progress in 
the field of geological research.

Figure 2 illustrates the geographical setting of the study area.

Fig. 2. Geographical setting of Tagragra d’Akka inlier

Geological Setting
Anchored in the Precambrian geological context [48–50], the Tagragra d’Akka 

inlier is distinguished by its Paleoproterozoic basement and its unconformably over-
lain Infra-Cambrian calcareous-dolomitic cover [52–54].

The basement (characterized by lithological complexity) reveals a predominant-
ly metamorphic composition that is dominated by metashale and schists [52, 55]. 
This basement is divided into two distinct lobe-like structures – one eastern, and 
one western [56, 57].

The eastern lobe is marked by the presence of a two-mica leucogranite and bio-
tite granite intrusions that date from the Eburnean orogeny [56, 57]. These intrusive 
masses are found within lower Proterozoic metamorphic and volcano-sedimentary 
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formations. Dykes of gabbro, granodiorite, and dolerite cut across these formations, 
thus emphasizing the lithological diversity of this region [48, 52, 56–60].

The western lobe is primarily composed of metamorphic and volcano- 
sedimentary rocks from the Paleoproterozoic Era; it is also intersected by dolerite 
and rhyodacite dykes [53, 61].

The calcareous-dolomitic cover from the Adoudounian age dates back approx-
imately 540 million years [52–54]; it consists of dolomitic, limestone, and shale for-
mations, which add a temporal dimension to the rich geological history of the inlier. 
This cover contributes to the complex lithological configuration of the region [62].

The influence of two major orogenic phases (the Eburnean cycle [marking the 
early Paleoproterozoic structures], and the Pan-African cycle [occurring at the end 
of the Proterozoic]), has shaped the entire inlier. These tectonic events led to the 
formation of the metamorphic basement and the sedimentation of the calcareous- 
dolomitic cover. The structural complexity of the region is evident through the pres-
ence of schistosity, folds, fault fractures, veins, joints, and breccias [48, 49, 50, 52, 55].

Distributed into three distinct families (S1, S2, and S3), the schistosity within 
the Tagragra d’Akka inlier play a crucial role in the structural characterization of the 
region. The S1 family (parallel to the stratification and associated with the Eburnean 
cycle) reflects the early Paleoproterozoic structures, while the S2 and S3 families are 
closely related to the Pan-African cycle (highlighting the more recent geological evo-
lution of the inlier). Folds have resulted from compressive stresses (primarily orient-
ed NE-SW), while fractures (induced by tensile forces) align along an NNW-SSE ori-
entation [52, 54, 55, 59, 60, 63, 64].

Furthermore, the inlier hosts notable gold deposits, such as the Irbiben deposit, 
where mineralized formations (especially quartz veins) emerged during the Pan- 
African cycle [52–54].

This geological and geographical description of the Tagragra d’Akka inlier 
establishes a solid foundation for the application of modern lithological-mapping 
methods. A deep understanding of the local geology and lithological features that 
were outlined above will be essential for interpreting the results and optimizing the 
accuracy of the proposed lithological-mapping technique.

The geological map in Figure 3 was digitized from published maps of 
Marrakech (1:500,000), Tafraout (1:100,000), and Tamazrar and Sidi Bouaddi 
(both 1:50,000); this shows the geological setting of the Tagragra d’Akka inlier.

2.2. Data Collection
The data that was utilized for this study was derived from satellite images that 

covered the study area. Multispectral (MS) scenes that were captured by the Eu-
ropean Space Agency’s (ESA’s) Sentinel-2A [65] and panchromatic (PAN) images 
from ALOS PRISM L1B [66] (Panchromatic Remote-sensing Instrument for Stereo 
Mapping), which were extracted from the archives (from July 2006 to March 2011) of 
the Japan Aerospace Exploration Agency (JAXA), were employed.
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The Sentinel-2A images were acquired on July 20, 2023, with a cloud coverage 
of 0%; this ensured the clear observation of the ground surface. The Sentinel-2A data 
was processed at Level-2A, meaning that it had undergone orthorectification and 
atmospheric corrections, which improved the reliability of the surface-reflectance 
data for lithological analysis.

The ALOS PRISM L1B images were obtained from a mosaic of six cloud-free 
scenes that were captured between July and October 2008. This high-resolution pan-
chromatic data (at a 2.5-meter resolution and acquired under favorable illumination 
conditions) provided the spatial detail that was necessary for precise lithological 
mapping (when combined with the Sentinel-2A multispectral data).

This combination of the MS and PAN images provided the spatial and spectral 
resolutions that were necessary for conducting a comprehensive analysis of the lith-
ological characteristics of the study area.

Table 1 shows the characteristics of both Sentinel-2A and ALOS PRISM L1B.

Table 1. Spectral characteristics and data-access information for Sentinel-2A  
and ALOS PRISM L1B satellites

Satellite 
image Spectral band Wavelength 

[nm]

Spatial 
resolution 

[m]

Swath 
width 
[km]

Data 
access Link to data

Sentinel-2A

Band 1 – Coastal aerosol 443.9 60

290 Open 
access

https://
dataspace.

copernicus.eu/
explore-data

Band 2 – Blue 496.6 10

Band 3 – Green 560.0 10

Band 4 – Red 664.5 10

Band 5 – Veg. Red Edge 703.9 20

Band 6 – Veg. Red Edge 740.2 20

Band 7 – Veg. Red Edge 782.5 20

Band 8 – NIR 835.1 10

Band 8A – Veg. Red Edge 864.8 20

Band 9 – Water Vapor 945.0 60

Band 10 – SWIR Cirrus 1373.5 60

Band 11 – SWIR 1613.7 20

Band 12 – SWIR 2202.4 20

ALOS PRISM Panchromatic 520–770 2.5 35 On 
demand

https://earth.esa.
int/eogateway/

catalog/
alos-prism-l1b

https://dataspace.copernicus.eu/explore-data
https://dataspace.copernicus.eu/explore-data
https://dataspace.copernicus.eu/explore-data
https://dataspace.copernicus.eu/explore-data
https://earth.esa.int/eogateway/catalog/alos-prism-l1b
https://earth.esa.int/eogateway/catalog/alos-prism-l1b
https://earth.esa.int/eogateway/catalog/alos-prism-l1b
https://earth.esa.int/eogateway/catalog/alos-prism-l1b
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2.3. Pansharpening
Improving the resolution remains a crucial step in making the most of the infor-

mation that is provided by optical satellite images [67]. The image-fusion technique, 
which involves combining image bands of different resolutions to create a new im-
age with the best characteristics from all of the input data [68–70], can be used as 
a tool to increase spatial resolution [71].

In our article, the high-resolution (2.5 m) ALOS PRISM L1B PAN image was 
fused with the low-resolution (20 and 10 m) Sentinel-2A MS images in a process that 
is known as pansharpening [71, 72].

The algorithm that was used for the pansharpening is known as color normal-
ized spectral sharpening (CNSS) and was chosen for (1) its ability to preserve spec-
tral and geometric information from MS images and (2) its support for multiple 
input bands [73, 74]:

InputBand SharpeningBand Num _ Bands _ In _ Segment
CN _ Sharpened   

Input _ Bands _ In _ Segment Num _ Bands _ In _ Segment
⋅ ⋅

=
+

 (1)

where:
 CN_Sharpened – output sharpened image (created by enhancing 

resolution or details of multispectral band),
 InputBand – multispectral band to be sharpened (usually with 

lower spatial resolution);
 SharpeningBand – high-resolution band (often panchromatic) that is 

used to enhance InputBand,
 Num_Bands_In_Segment – total number of bands in segment that are used for 

sharpening,
 Input_Bands_In_Segment – sum of input bands in segment (based on spatial 

and spectral characteristics of input image).

Although other fusion methods such as Gram–Schmidt, Discrete Wavelet 
Transform, and A Trous Wavelet Transform were available, our study relied on the 
CNSS method due to its efficiency and faster processing times [75]. Given the exten-
sive surface area of our region of interest, pansharpening would demand significant 
computational resources. The CNSS method provided an optimal balance between 
processing efficiency and the preservation of spectral fidelity while enhancing spa-
tial detail; this made it the ideal choice for our lithological-mapping objectives.

The spatial resolutions of the Sentinel-2A bands were enhanced to a resolution 
of 2.5 m through their fusion with the ALOS PRISM L1B PAN band. The resulting 
pansharpened bands displayed a spatial resolution of 2.5 m (as illustrated in Fig-
ure 4); this retained the spectral characteristics of the original MS bands.

From the higher-resolution Sentinel-2A bands, only visible to near- infrared (VNIR) 
bands B2, B3, and B4 and short-wave infrared (SWIR) bands B11 and B12 were selected 
for the subsequent stages of the study [76].
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2.4. Principal Component Analysis (PCA)

The high-resolution MS bands were integrated into a principal component anal-
ysis (PCA). PCA is a statistical technique that is aimed at reducing the dimensionali-
ty of a data set while preserving its variability [77]. In remote sensing, this enhances 
the relevance of the pixels for geological applications based on their specific spectral 
signatures [78–80].

a) b)

 c)

Fig. 4. Resolution enhancement through pansharpening:  
a) S2A MS True Color Composite, 10-meter spatial resolution;  
b) ALOS PRISM L1B PAN band, 2.5-meter spatial resolution;  

c) High-res MS True Color Composite, 2.5-meter spatial resolution
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To initiate PCA, mathematical calculations were performed earlier on the 
high-resolution MS bands – particularly, by establishing ratios between specific 
bands to facilitate the distinctions between lithological formations. These ratios were 
selected based on the geological context, with the goal of optimizing the differentia-
tion of the mineral and lithological-formation characteristic of the region.

The calculated ratios included the following:
 – BandRatio1 (B04/B03: Red/Green),
 – BandRatio2 (B11/B02: SWIR/Blue),
 – BandRatio3 (B12/B04: SWIR/Red).

BandRatio1 (B04/B03: Red/Green). This ratio was chosen to highlight oxidized 
formations and minerals that contained iron oxides, such as those that are found 
in metamorphic rocks (schists) and weathered deposits (which were thought to 
be abundant in this area). Commonly resulting from metamorphic and alteration 
processes minerals like hematite and goethite typically exhibit strong absorptions 
in the red band (B04) and higher reflectance in the green band (B03), thus facilitat-
ing their identification in altered zones [76]. This ratio was, therefore, effective for 
locating altered zones and oxidized mineralizations that were linked to tectonic 
structures.

BandRatio2 (B11/B02: SWIR/Blue). This ratio targeted the hydrated minerals 
(particularly, clays) that may have been present in the schist and metashale for-
mations of the Paleoproterozoic basement as well as in the altered dolomitic forma-
tions in the cover layer. Formed from the alteration of schists and other metamor-
phic rocks, clays exhibit characteristic absorption in the SWIR (B11) due to their 
OH bonds, while reflectance in the blue band (B02) enhances this contrast [76]. This 
ratio is essential for detecting clay-bearing zones, which are often associated with 
metamorphism and hydrothermal alteration in tectonically active regions such as 
Tagragra d’Akka.

BandRatio3 (B12/B04: SWIR/Red). This ratio was used to detect siliceous min-
erals like quartz, mica, and feldspar, which are abundant in the granite intrusions 
(biotite granite and two-mica leucogranite) and the quartz veins that are associat-
ed with the region’s gold deposits. Siliceous minerals and granite intrusions are 
characterized by increased reflectance in the SWIR (B12) and absorption in the red 
band (B04), making this ratio effective for distinguishing silicate-rich units [76]. In 
the Tagragra d’Akka area, this ratio was particularly relevant for distinguishing 
quartz veins from other metamorphic and volcano-sedimentary formations.

The resulting images from the calculated band ratios are shown in Figure 5.
The calculated ratios were then used in PCA within SAGA GIS [81] – open-

source software that is commonly used in geoscientific applications. In SAGA GIS, 
the band-ratio images are input into the PCA algorithm, and a set of uncorrelated 
principal components (PCs) that capture the maximum spectral variability within 
the data are generated.
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From the resulting PCs, three were selected to represent most of the spectral 
variability of the lithologies: PC1, PC2, and PC3. These exhibited most of this vari-
ability; as such, they were combined into a color composite for the red, green, and 
blue channels, respectively.

This approach allowed for visualizations of the different lithologies in the re-
gion in a distinct and contrasting manner within single composite images (Fig. 6).

Resulting composite image from PCA showed a very clear distinction between 
the carbonate and detrital formations. The metamorphic and igneous formations 
displayed a slightly less pronounced but still identifiable contrast.

Fig. 5. Calculated band ratios:  
a) BandRatio1 = B04/B03; b) BandRatio2 = B11/B02; c) BandRatio3 = B12/B04

a) b)

 c)
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2.5. Unsupervised Segmentation
The resulting image from PCA was provided to a segmentation algorithm that 

was aimed at grouping those pixels with similar characteristics into clusters [82, 83]. 
The segmentation fell within the domain of computer vision and image-processing 
applications – both disciplines of artificial intelligence [84]. While there are several seg-
mentation algorithms, the one that was used here was Mean Shift – a clustering method 
that was proposed by Fukunaga and Hostetler [85]; it was developed in 1975 but only 
became widely known in 1995 [86]. This method was chosen for its advantages [87], in-
cluding (1) its non-parametric and iterative nature, (2) its lack of a requirement for a pre-
defined number of clusters, and (3) its independence from the shapes of the clusters [88]:

 1( ) ( )
i k

h i
x S

M x x x
k ∈

= −∑  (2)

where:
 Mh(x) – function that represents measure or value that is calculated at 

point x,
 k – normalizing constant or total number of points xi in subset Sk,
 i kx S∑ ∈  – summation over allpoints xi that belong to subset Sk,
 xi – individual points within subset Sk,
 x – specific point at which Mh(x) is evaluated,
 (xi – x) – difference between each point xi in Sk and point x.

Fig. 6. Composite image of Tagragra d’Akka inlier
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The main objective of this segmentation was to automatically extract any out-
cropping formations. The result of this step was an image that was classified into 
clusters, with each cluster corresponding to a distinct lithology (Fig. 7).

Fig. 7. Vector clusters of similar pixels, with close-up images highlighted in Figure 6

The applied segmentation demonstrated the ability to discern subtle details in 
geological structures, as is evident in Scenes 1, 2, 3, and (especially) 4 (Fig. 7). The 
contours that were delineated by this segmentation were remarkably fine and pre-
cise, thus providing a cartographic representation of exceptional quality and ensur-
ing a detailed characterization of the different geological formations in the study 
area (Fig. 8).
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Subsequently, the zonal statistics were calculated from the pixel values of the 
raster that resulted from PCA within the boundaries of the segmented units to per-
form meaningful analyses and interpretations [89]. Figure 9 explains the process 
of this step.

Fig. 8. Overview of segmentation details in true-color composite

Fig. 9. Zonal-statistics process

These results highlight the capability of high resolution in capturing the nuanc-
es of a landscape, thus paving the way for the generation of large-scale maps that 
offer comprehensive representations of geological features.
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2.6. Supervised Classification

In the field of image analysis, supervised classification is the process where 
pixels are assigned to predefined classes [90]. In geology, supervised classification 
involves the grouping of similar pixels into classes that correspond to different rock 
types by comparing the pixels with each other and with those whose lithologies 
are known [91].

For a lithological study, remote sensing enables the exploitation of any differ-
ences in the physical and chemical properties of rocks. The variations among the 
rocks result in reflections of electromagnetic energy at different wavelengths, there-
by allowing for the identification of those spectral characteristics that are related 
to the mineralogy of the rocks. Those methods that are based on the spectrum are 
commonly used for automated lithological mapping or classification [92].

As assemblies of minerals, rocks exhibit higher compositional complexities than 
individual minerals do. While defining diagnostic spectral curves for rocks is a chal-
lenge, it is possible to comprehensively describe their spectral characteristics based 
on those of constituent minerals. Among the two methods that use spectral signa-
tures (namely, solar reflection and thermal-IR reflection), our approach focused on 
a solar reflection (VNIR + SWIR) analysis. This method relies on models to under-
stand the influences of minerals and textures on the spectra [76].

To establish the specific spectral signatures for each rock type, we utilized 
the Sentinel Application Platform (SNAP) software [93]. SNAP allows for the ex-
tractions of reflectance spectra across the VNIR-SWIR bands, thus facilitating the 
identification of mineralogical compositions by analyzing the spectral responses at 
targeted wavelengths. In this study, we selected representative pixels for each lith-
ological type in the Tagragra d’Akka inlier and generated spectral signatures; these 
were then compared with the reference spectra for the minerals that were typical of 
each rock type (such as iron oxides, clays, and carbonates) [76]. This comparative 
approach confirmed the lithological identities of the various classes.

2.7. Data Preparation

Based on previous geological works in the region [49, 53, 56], the main litholog-
ical formations that can be identified include volcanic, metamorphic, carbonate, and 
detrital rocks. Before starting the sampling process, the specific spectral signatures 
for each rock type were defined in order to characterize the samples and train the 
model (Table 2).

To ensure an adequate discrimination among the rock types despite their gen-
erally similar spectral behaviors at Sentinel-2’s spectral resolution, we employed 
class-separability measures such as the Jeffries-Matusita distance and divergence 
indices [94].

Figure 10 clearly illustrates these spectral signatures, presenting reflectance val-
ues as functions of the wavelengths for all of the lithologies.
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Table 2. Reflectance values of each rock type at Tagragra d’Akka inlier  
in relation to wavelengths

Rock 
type

Band λ [nm]

B1 
(443)

B2 
(490)

B3 
(560)

B4 
(665)

B5 
(705)

B6 
(740)

B7 
(782)

B8 
(842)

B8A 
(865)

B9 
(945)

B11 
(1610)

B12 
(2190)

DoL 0.169 0.164 0.200 0.314 0.336 0.357 0.376 0.374 0.383 0.229 0.498 0.426

LiM 0.171 0.166 0.198 0.301 0.324 0.339 0.351 0.338 0.354 0.196 0.460 0.390

LeG 0.175 0.175 0.213 0.297 0.302 0.322 0.331 0.335 0.342 0.193 0.418 0.336

PG 0.168 0.169 0.198 0.273 0.275 0.292 0.311 0.307 0.315 0.163 0.348 0.290

GD 0.168 0.171 0.200 0.275 0.291 0.298 0.313 0.302 0.314 0.173 0.386 0.323

DoL 0.156 0.146 0.171 0.258 0.277 0.289 0.303 0.301 0.310 0.194 0.363 0.306

TA 0.156 0.147 0.168 0.240 0.258 0.271 0.282 0.271 0.281 0.150 0.236 0.206

CoG 0.154 0.162 0.180 0.243 0.240 0.257 0.258 0.269 0.257 0.130 0.234 0.180

SiS 0.156 0.140 0.154 0.215 0.240 0.264 0.281 0.268 0.287 0.159 0.282 0.243

MeS 0.157 0.155 0.180 0.235 0.235 0.242 0.255 0.246 0.253 0.131 0.340 0.304

QuS 0.155 0.143 0.161 0.215 0.227 0.234 0.247 0.238 0.246 0.134 0.322 0.298

SilS 0.161 0.146 0.153 0.207 0.223 0.238 0.249 0.236 0.252 0.147 0.234 0.214

SaS 0.157 0.149 0.169 0.214 0.223 0.232 0.242 0.234 0.234 0.121 0.327 0.282

Quz 0.153 0.139 0.149 0.196 0.210 0.214 0.227 0.216 0.226 0.123 0.313 0.282

ScT 0.144 0.134 0.150 0.187 0.190 0.199 0.204 0.198 0.203 0.104 0.218 0.187

Tuf 0.151 0.138 0.141 0.179 0.187 0.195 0.199 0.193 0.198 0.118 0.165 0.137

IgB 0.152 0.146 0.153 0.181 0.186 0.195 0.198 0.191 0.196 0.109 0.207 0.181

SiS 0.149 0.129 0.131 0.147 0.167 0.166 0.176 0.158 0.173 0.097 0.225 0.186

DoL – Dolomitic limestone; LiM – Limestone; LeG – Leucogranite; PG – Porphyritic granite; GD – Gran-
ite granodiorite; DoL – Dolomite; TA – Trachyandesite; CoG – Conglomerate; SiS – Silty sandstone; 
MeS – Metashale; QuS – Quartzitic sandstone; SilS – Siltstones; SaS – Sandy shale; Quz – Quartzite; 
ScT – Schiste; Tuf – Tuff; IgB – Ignimbrite; SiS – Silty shale.
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Once the spectral signatures were determined, a set of samples was generated 
to initiate the sampling process from the image; these carefully positioned samples 
represented different combinations of spectral features. This data was then used to 
train our model, thus facilitating a comprehensive analysis of the various rock types 
based on the previously defined spectral information.

2.8. Data Splitting

The preprocessed data was split into two sets in order to ensure robust mod-
el training and evaluation. Specifically, the data was divided on a per-class basis 
(with 70% allocated for training and 30% for testing), thus maintaining a propor-
tional representation of each lithological unit in both sets. This approach supported 
balanced-model training and reliable assessment by preserving the inherent class 
distribution [95]. Each lithological unit’s samples were randomly selected for the 
training and testing based on this split, thus reducing any sampling bias and en-
hancing the model’s ability to generalize across the study area. The spatial distribu-
tion of these samples is illustrated in Figure 11, while Table 3 outlines the exact pixel 
counts per lithological unit in each set.
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Fig. 10. Spectral profiles of different reflectance responses of rock types



High-Resolution Lithology Detection Using Sentinel-2A, ALOS PRISM L1B Images... 121

In supervised classification tasks such as lithological mapping, class imbalance 
is a well-known challenge – particularly with classifiers like SVM, which can be 
sensitive to overrepresented classes. Table 3 highlights the uneven distribution of 
the training samples among the lithological units, which arose due to the natural 
variability in the occurrence of each rock type across the study area.

To mitigate the issue of class imbalance, additional strategies can be employed. 
One effective approach is using a class-weight parameter, which adjusts the importance 
of each class during model training, thus ensuring that underrepresented classes re-
ceive adequate attention. Another common method involves oversampling techniques 
such as the Synthetic Minority Over-sampling TEchnique (SMOTE), which generates 
new samples for minority classes by interpolating between the existing ones. These 
methods help create a more balanced representation of the classes in a training set, 
potentially improving the classification accuracy for less-prevalent lithological units.

Fig. 11. Samples from different locations in Tagragra d’Akka inlier
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Table 3. Number of pixel samples taken for each rock type in Tagragra d’Akka inlier

Lithological unit Training samples [pixels] Testing samples [pixels]

Dolomitic limestone 965 498

Limestone 490 293

Leucogranite 879 356

Porphyritic granite 321 137

Granite granodiorite 2015 1002

Dolomite 7878 2459

Trachyandesite 271 147

Conglomerate 1819 847

Silty sandstone 856 356

Green schist (metashale) 3442 1865

Quartzitic sandstone 303 118

Siltstones 1920 802

Sandy shale 140 85

Quartzite 122 51

Spotted schist 428 207

Tuff 133 74

Ignimbrite 605 398

Silty shale 179 61

2.9. Model Training

The training process is crucial in developing a lithological classification mod-
el; it involves providing a training data set for a machine-learning algorithm, thus 
allowing it to construct an adequate representation of the spectral features of the 
targeted lithological formations.

In this study, the chosen machine-learning algorithm for classification was SVM; 
such an algorithm stands out for its ability to define a hyperplane in a multidimen-
sional space, effectively separating the data into different classes while maximizing 
the margin between these classes [96]. This intrinsic feature makes SVM particularly 
robust, reducing the risk of overfitting as compared to other classifiers and enhanc-
ing its ability to generalize models to unknown data sets.
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The SVM algorithm was deliberately selected due to its specific advantages in 
the context of lithological classification. The intrinsic complexity of rock spectra (of-
ten characterized by nonlinear patterns) benefits from the efficiency of SVM in han-
dling such complex spectral structures.

To develop our model, we used Orfeo ToolBox’s [97] machine-learning func-
tionalities, which provided a streamlined approach for setting up and training the 
classifier without the need for exhaustive parameter-tuning. We defined a linear 
SVM kernel, and we used C-support vector classification (CSVC) as the model type 
within the TrainVectorClassifier tool.

After executing the classifier, we applied the generated model to the vector data 
in order to classify the image based on the spectral signature patterns that were 
identified during the training.

2.10. Model Evaluation

Evaluating a machine-learning model involves using it on new data, thereby 
making predictions on unknown data sets.

In this study, the pretrained lithology-detection model was utilized to classify 
the rest of the Tagragra d’Akka region. To assess the performance of the developed 
lithology-detection model, a confusion matrix was calculated. The confusion ma-
trix expressed the classification results by dividing them into four categories: true 
positive, false positive, false negative, and true negative (Table 4). Using these four 
categories, the model could be evaluated in various ways [98].

Table 4. Confusion-matrix parameters

Classifier output
Actual class

0 1

Predicted class
0 True negatives (TN) False negatives (FN)

1 False positives (FP) True positives (TP)

In the context of a confusion matrix, true positives are correctly classified as 
positive pixels, and false positives are negative pixels that are labeled as positive by 
the model (and vice versa for the true and false negatives):
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where:
 CM – confusion matrix, which is used to evaluate performance of classifica-

tion model by comparing predicted and actual classes,
 c – total number of classes in classification problem.
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Several performance metrics were used based on the confusion matrix to eval-
uate the classification performance. For those data sets with class imbalances (and 
in the case of multiclass classification), the recommended performance evaluation 
metrics included precision, recall, the F1 score, the overall accuracy, and the Cohen 
kappa score [99]. Precision is the proportion of the data that a model correctly identi-
fies as true; while recall is the true positive rate; i.e., the proportion of the positive ex-
amples that are correctly identified. The F1 score is the harmonic mean of precision 
and recall, while the overall accuracy is the proportion of correctly labeled exam-
ples. Cohen’s kappa coefficient is a metric that compares any observed accuracy to 
the expected accuracy; it assesses how well the model can separate instances into the 
correct classes. According to Landis and Koch [100], a kappa score of 0.00–0.20 corre-
sponds to a slight agreement, 0.21–0.40 to a fair agreement, 0.41–0.60 to a moderate 
agreement, 0.61–0.80 to a substantial agreement, and 0.81–1.00 indicates a nearly 
perfect agreement by the classifier. Table 5 summarizes the equations of the used 
evaluation metrics.

Table 5. Evaluation metric equations

Metrics Equation

Precision (user’s accuracy [UA])
TPPrecision

TP FP
=

+

Recall (producer’s accuracy [PA])
TPRecall

TP FN
=

+

F1 score 1  2 Precision RecallF Score
Precision Recall

⋅
= ⋅

+

Overall accuracy
TP TNAccuracy

TP TN FP FN
+

=
+ + +

Kappa coefficient

1
o e

c
e

P P
K

P
−

=
−
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o
TP TNP
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3. Results

3.1. Lithology-Detection-Model Evaluation
During the testing of the lithology-detection model on the new samples from 

the Tagragra d’Akka inlier, the evaluation showed that the model successfully 
identified 16 out of the 18 rock classes on which it had been trained. Due to their 
comparable spectral properties, three classes (tuff, ignimbrite, and trachyande-
site) were combined into a single class (which we designated “volcanic-detritic 
complex”).

The model evaluation involved a thorough examination of the key metrics, in-
cluding precision, recall, and the F1 score for each lithological class. These measures 
provided a detailed understanding of the model’s ability to perform accurate classi-
fications. The results are detailed in Table 6 and in Figure 12.

Table 6. Performance metrics for each rock class

Rock class Precision [%] Recall [%] F1 score [%]

Sandy shale 64 71 67

Siltstones 70 71 70

Limestone 97 79 87

Dolomitic limestone 84 95 89

Volcanic-detritic complex  
(tuff, ignimbrite, and trachyandesite) 78 74 76

Conglomerate 10 8 9

Silty shale 70 75 72

Dolomite 96 90 92

Silty sandstone 86 89 84

Porphyritic granite 87 87 87

Quartzitic sandstone 88 78 83

Leucogranite 97 85 91

Quartzite 84 77 80

Spotted schist 78 72 75

Green schist (metashale) 86 86 86

Granite granodiorite 84 87 86
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The variability in the model performance became apparent, thus revealing its 
remarkable ability to discern certain lithological classes. Satisfactory precision was 
demonstrated in the classifications of the sedimentary rocks – especially of the car-
bonates (ranging between 84 and 97%) and the detrital rocks (between 64 and 84%). 
On the other hand, the conglomerates displayed the lowest value (10%).

However, the classifications of the metamorphic and igneous rocks showed os-
cillating precision levels for the metamorphic rocks (between 78 and 86%) and the 
volcanic rocks (between 78 and 97%). Overall, the results showed that the developed 
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model demonstrated its general ability to automatically distinguish between the dif-
ferent lithological classes, with marked priorities for the carbonates, followed by the 
volcanic rocks, then the metamorphic rocks, and, finally, the detrital rocks (present-
ing average values of 90, 87, 82, and 74%, respectively).

The low precision that could be observed for the conglomerate class highlighted 
a specific challenge for the developed model in characterizing this lithology; this 
was mainly due to the heterogeneity of the elements that made up the rock. This 
paves the way for further investigations in future work.

The evaluation metrics are represented as bar charts for each of the detected 
lithological classes in Figure 12.

As shown in Table 6, the model’s performance was evaluated for each rock 
class. Given the data set’s imbalance (with the majority classes potentially affecting 
the overall accuracy), we included the recall and precision for each class to provide 
a more comprehensive assessment. This detailed breakdown allows for a clearer 
view of the model’s effectiveness across all of the rock types, thus ensuring that the 
minority classes were adequately represented in the evaluation. After measuring the 
proportions of the correct classifications, the overall accuracy reached 86%; this indi-
cated high model performance. Additionally, the kappa coefficient (which assesses 
agreement beyond chance) was 84%, suggesting the substantial alignment between 
the model’s predictions and its actual observations (Table 7).

Table 7. Model-performance metrics

Metric Value [%]

Overall accuracy 86

Kappa coefficient 84

3.2. Lithological Classification Map

The lithological classification map (Fig. 13) represents the culmination of our 
lithological- mapping approach.

Leveraging the good performance of the machine- learning model, this map pro-
vides a precise and detailed depiction of the various lithological classes in the Tagra-
gra d’Akka inlier. Additionally, it highlights cryptic classes that were not present in 
the existing geological maps but are similar to 1 of the 16 classes on which the model 
was trained in their lithological characteristics (as shown by the black box on the 
map). These newly identified classes were labeled “Unmapped” (e.g., sandy shale – 
Unmapped 1; spotted shale – Unmapped 2); this label reflected that these classes 
ages were not determined. Further dating studies are needed to provide a compre-
hensive identification of these formations.
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4. Discussion

4.1. Comparison with Other Methods
Following a comprehensive evaluation of our lithological-mapping method, 

we came to the conclusion that we developed an effective methodology in terms of 
spatial resolution and processing speed, thus placing it among similar approaches 
that have been introduced in other studies [5, 19, 92, 101–106]. The diversity of these 
methods enables a transition from traditional approaches (which are often costly, 
time- consuming, and prone to human error) to a faster, more accurate, and cost- 
effective digital workflow. Our study offers the following advantages:

Spatial Resolution
A crucial difference between the approach that was adopted in this article and 

existing methods lies in the spatial resolution that can be achieved. Unlike most stud-
ies that use Landsat images at 30 m [23, 27] or ASTER images at 15 meters [27, 29], 
our method leverages a panchromatic image from ALOS PRISM L1B and applies 
it to Sentinel-2A MS bands, thus providing a remarkable resolution of 2.5 m. This 
advance in spatial resolution contributes to enabling a detailed characterization of 
lithological formations in arid regions. Additionally, the finer spatial resolution fa-
cilitates the identification of smaller lithological features, which are often missed 
at coarser resolutions. This enhancement is particularly important for regions with 
complex geologies, where fine-scale variations can be critical for understanding 
their geological histories and structures.

Our study contributes to the growing amount of research that has focused on 
enhancing the spatial resolution of satellite imagery. For instance, several studies 
have utilized WorldView imagery to discriminate lithologies – taking advantage of 
its high spatial resolution (which reaches 0.3 meters). In one such study, Karimza-
deh and Tangestani [104] demonstrated the effectiveness of WorldView-3 imagery 
in lithological discrimination. In another study, Zengeya et al. [101] showcased how 
WorldView-2 multispectral data could be used to predict and map nitrogen concen-
trations, further illustrating the versatility of high-resolution satellite data in envi-
ronmental monitoring.

Detection Scale
Our method demonstrates an ability to extract lithological details that support 

the creation of large-scale geological maps. The detailed mapping scale can help 
with microtectonic studies and mining exploration while also improving mineral ex-
ploration by more accurately detecting small geochemical and geophysical features.

Detections of Unmapped Cryptic Areas
A notable contribution of the model lies in its ability to detect areas that have 

been wrongly mapped in existing geological maps. By identifying previously unex-
plored areas, the method adds significant value to the updating and enrichment of 
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geological knowledge (and a reconsideration of past geological events in the Tagra-
gra d’Akka inlier). Moreover, the detection of these unmapped cryptic areas could 
lead to new discoveries of mineral deposits or other natural resources, potentially 
driving economic development in a region. The ability to reveal cryptic geological 
features also contributes to a better understanding of regional tectonics and the evo-
lutionary history of an area, thus providing valuable data for academic research and 
practical applications alike.

Limitations

Our lithological-detection model has some limitations that are related to its 
restricted geographical applicability. After being optimized for regions that share 
similarities with the Tagragra d’Akka inlier in terms of climate, vegetation, altera-
tion, and topography, the model could face challenges in radically different envi-
ronments. Its sensitivity to these conditions underscores the need for adjustments in 
order to ensure optimal performance in diverse contexts. Additionally, the depend-
ence on training data and the need for ongoing updates highlight the challenges that 
are associated with generalizing the model to various geographical areas. These lim-
itations emphasize the need for caution when applying the model outside its initial 
context while providing avenues for future improvements to increase its versatility. 
Future work could focus on expanding the training data set to include a broader 
range of geological settings, thus improving the model. Another potential improve-
ment might be the integration of multi-sensor data; this could enhance the model’s 
ability to generalize across different environments by leveraging complementary 
information from various remote-sensing platforms.

5. Conclusion and Perspectives

This study has demonstrated the effectiveness of geospatial analysis in one of 
the complex application fields (geology) by integrating remote sensing and machine 
learning. The use of machine-learning algorithms such as SVM for lithological re-
mote sensing from pansharpened satellite images led to the creation of a model with 
an overall accuracy of 86%. This model was trained on an extensive data set that uti-
lized the spectral signatures of each rock class, thus ensuring reliable classification. 
These findings underscore the considerable potential of this approach to enhance 
the accuracy of geological maps. By leveraging high-resolution data and machine- 
learning techniques, this method offers a significant improvement over traditional 
mapping techniques, providing more-precise and -detailed geological information. 
The results of this study pave the way for further scientific research, encouraging 
the re-evaluations and validations of existing geological maps. Moreover, they guide 
future map production toward methods like this, which can lead to better resource 
management, exploration, and environmental planning.
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