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Abstract:	 Over the years, urban heat island (UHI) has emerged as a significant contribu-
tor to global warming, thereby necessitating considerable attention. Currently, 
satellite technology is a basic tool for the future – particularly, for its effective 
and efficient urban analysis. Thus, this study aims to assess the progress of ex-
isting satellite-based UHI studies by reviewing scientific publications that were 
released between 1972 and early 2024. Moreover, we observed that 1991 was 
a pivotal year, marking the integration of satellite technologies into the devel-
opment of UHI monitoring and identification systems based on the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines, this review methodology examines the UHI phenomenon by focusing on 
its characteristics based on sensors, algorithms, and accuracy. The results of the 
systematic review revealed that Landsat and MODIS were the most-deployed 
sensors for UHI identification and monitoring, while the land surface tempera-
ture (LST) indicator and normalized difference vegetation index (NDVI) were 
the most-deployed algorithms. Regarding accuracy, the integration of satellite 
sensors and algorithms into UHI  studies provides a promising range of ac-
curacies. The review found that the future of satellite-based UHI monitoring 
is promising, with technological advancements driving the development of 
effective techniques such as data fusion, gap filling, machine learning  (ML), 
and deep learning. Additionally, Google Earth Engine (GEE) is a cloud-based 
platform for performing large-scale geospatial analyses, which facilitates the 
assessments of local, regional, and global-scale UHIs. Finally, the other review 
findings for future directions indicated that future satellite-based UHI studies 
will prioritize six crucial points: enhancing data resolution, integrating satellite 
data with ground-based sensors, artificial intelligence, and ML, climate change 
modeling, and a global study of UHIs and their impacts.
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1.	 Introduction

Urban heat island (UHI) is a phenomenon that describes the elevated tempera-
tures that can be observed in metropolitan or urban areas owing to human activi-
ties (including the development and utilization of environmentally unfriendly mo-
torized vehicles) [1]. This phenomenon indicates that the canopy layers of central 
urban regions exhibit higher excess temperatures than nearby regions at similar 
elevations  [2]. UHIs contribute to natural-ecosystem degradation, deforestation, 
and biodiversity reduction [3]. Notably, the rapid development of cities has led to 
increased human activities, which frequently occur with little regard for their im-
pacts on existing infrastructure and other essential urban functions  [4]. UHIs are 
influenced by various factors, including geographical (climate, topography, and sur-
rounding rural areas) and temporal (daily and seasonal) variations, meteorological 
conditions, city populations (the relationships between buildings and functions), 
synoptic weather conditions (wind and cloud covers), city form (materials, geom-
etries, and green open spaces), and city functions (energy/water consumption and 
pollution) [2].

The existing UHI studies have employed surface-temperature models to estab-
lish the relationship between roadway geometries and nocturnal heat islands  [5]. 
One method for enhancing human thermal comfort in urban spaces involves the 
exploration of strategies for mitigating the UHI phenomena (Fig. 1).

Fig. 1. UHI temperature profile
Source: [6]

The consistent shape of a UHI temperature profile (Fig. 1) often corresponds to 
a depression that is formed by the existence of specific hotspots (micro-UHIs). The 
origins of these micro-UHIs are tied to factors such as parking lots, shopping centers, 
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and industrial facilities – some of them expanding because of specific heat [6]. The 
author of  [5] further connected their origins to landscape elements that included 
fields, gardens, and water bodies. Moreover, a UHI’s  intensity or magnitude was 
defined as the difference between a city’s peak temperature and the lowest tempera-
ture of its surrounding areas [7].

In 2005, the Environmental Protection Agency identified the UHI phenomenon 
as a major issue for cities globally [8]. The 2007 report of the Intergovernmental Pan-
el on Climate Change confirmed that urbanization and land use (LU) changes only 
exerted negligible effects (less than 0.006°C and 0°C per decade over land and ocean, 
respectively) on the global temperature records [9]. Additionally, urbanization and 
LU exert negligible effects on the reported widespread warming of water bodies. 
However, evidence abounds regarding the impacts of UHIs on clouds, precipitation, 
and daily temperature ranges [10]. Over the years, UHIs have emerged as significant 
contributing variables to the occurrence of global warming [11]. Alongside natural 
catastrophes, precipitation, and increased sea levels, urban warming is a key driver 
of global change in cities, accounting for 60% of its causes  [12]. UHIs impact the 
environment as well as human life, increasing air pollution and the accumulation of 
greenhouse gases (GHGs); this impacts urban living and poses health threats [13]. 
Increasing temperatures typically exacerbate human stress, thereby reducing urban 
people’s productivity and creativity [13].

UHIs can develop at several urban-atmosphere levels, including surface and 
subsurface levels [2, 14]; this is a phenomenon where urban areas are warmer than 
their surrounding non-urban areas. Atmospheric heat islands dominate during 
calm and clear nights; these are characterized by a significant difference in radi-
ative cooling between metropolitan and surrounding rural areas  [14]. Basically, 
UHIs are known as surface UHIs and temperature UHIs; surface urban heat islands 
and temperature urban heat islands refer both to the phenomena in which urban ar-
eas show higher temperatures than their surrounding rural areas [15]. Surface UHIs 
particularly indicate the difference in land surface temperatures, whereas UHIs in-
clude both surface and air temperature differences [15, 16]. The advent of satellite 
remote-sensing technology has enabled surface UHI studies across larger areas [17].

Satellite remote-sensing techniques are basic research tools for the future – par-
ticularly for effective and efficient urban analysis (including UHI estimations) [17]. 
The advantages of using satellite remote-sensing data include their relatively high 
resolution, consistency, reproducibility, and capacity to accurately measure/record 
ground conditions [18]. In satellite remote sensing, satellites that are equipped with 
thermal-infrared (IR) and TIR sensors (TIRS) collect quantitative surface-temperature 
data for measurement and analysis  [19]. In the last three decades, satellite-based 
UHI studies have solely focused on estimating surface temperatures from IR data. 
At first, most of these studies relied on the Advanced Very High-Resolution Radi-
ometer  (AVHRR) satellites of the National Oceanic and Atmospheric Administra-
tion [20]. The 1990s were characterized by the widespread utilization of IR bands 
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from Landsat Thematic Mapper (TM) satellites for urban climate studies, followed 
by the adoption of Enhanced  TM  Plus  (ETM+) technology in the early  2000s for 
UHI estimation  [21]. Several authors (including  [21]) have reviewed UHI studies; 
e.g., Review on urban heat islands in China: methods, its impacts on building en-
ergy requirements and mitigation strategies. A literature review of the UHI model 
of a Malaysian tropical city  [22] and another review that was conducted by  [23] 
critically evaluated the existing UHI studies by highlighting their methodological 
shortcomings. However, only a few literature reviews have adopted the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique – 
particularly for engineering reviews [24].

Several technical literature reviews followed the PRISMA approach; e.g., [25], 
which examined oil palm phenology modeling based on remote-sensing data. The 
review offered insights into the developments of appropriate identification, classifi-
cation, and construction techniques for oil palm phenology regression models. Ad-
ditionally, [26] investigated Buhos – a web-based systematic literature review (SLR) 
management application that was developed in Ruby and provided tools for search 
filtration, data extraction, and reporting. Buhos can be locally installed using an in-
ternal web server or disseminated and incorporated into other online services.

Thus, this SLR (Satellite-Based Urban Heat Island Study: A PRISMA-Based SLR) 
was conducted in response to the criticality of assessing the evolution of satellite-
based UHI  studies to explore references for future studies. This  SLR is aimed at 
determining the progress of existing satellite-sensor-based UHI studies by review-
ing scientific publications that were released between 1972 and early 2024. This re-
view mainly focused on journals that were related to satellite-based UHI studies.

This paper is organized as follows. Section 2 contains the literature review of 
the main methods used in satellite-based urban heat island (UHI) studies. Section 3 
presents the identification of UHI  characteristics according to sensor type, algo-
rithms, and accuracy. Section 4 discusses the results, while Section 5 outlines future 
directions for satellite-based urban heat island studies. Finally, Section 6 concludes 
the study.

2.	 Literature Review of Methods  
for Satellite-Based Urban Heat Islands

Employing the PRISMA approach, suitable journals were collected (starting 
from the earliest scientific publications) [24]. This approach followed a set of scientif-
ic techniques that was specifically designed to prevent bias – primarily by aiming to 
identify, appraise, and synthesize all of the relevant literature to answer the research 
questions [27].

The literature search was conducted from many databases; however, this review 
used Google Scholar and Scopus, as both database search engines were versatile on 
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the subject matter and were conventionally employed for literature searches  [25]. 
The literature search was conducted using the following keywords: TITLE-ABS-KEY 
(“urban heat island” AND “remote sensing” AND “surface temperature” AND 
“vegetation index”).

Consequently, our literature search generated 4400  journals that were pub-
lished between 1972 and early 2024. Thereafter, we screened for any duplications 
that were included in the searches that were conducted on Google Scholar and Sco-
pus (Fig. 2). In 1991, satellite remote-sensing–based studies for UHI monitoring and 
identification started to appear; e.g., studies that involved the utilizations of the 
IR bands from the Landsat TM satellites. Thus, we filtered the 4,400 papers, yielding 
421  relevant papers. Additionally, we identified 56  journals that were re-filtered 
during the eligibility assessment, as they did not satisfy the inclusion requirements. 
This action yielded 29 journals for the SLR; these papers explored the most-recent 
satellite remote-sensing technologies that were relevant to this review.

Fig. 2. PRISMA flowchart
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Based on the development of satellite remote-sensing technology for UHI iden-
tification and monitoring that started in 1991 (Fig. 3), our review findings identified 
421 relevant studies. The graph (Fig. 4) shows that only a few studies on UHI were 
published between 1991 and 2006; however, 2009 witnessed a significant increase in 
the number of UHI studies.

Fig. 3. Number of satellite remote-sensing-based UHI articles by publication year

Fig. 4. Bibliometric analysis of review articles on UHI studies  
based on keywords and publication times
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An increase in UHI  studies could be observed again in  2018; this contin-
ued until early  2024. Notably, Scopus identified  23,  30,  47, and 50  publications 
in 2018, 2019, 2020, and 2021, respectively. Additionally, 48 and 52 publications were 
identified in 2022 and early 2024, respectively.

Our literature review of  UHIs was categorized by keywords and a publica-
tion period using a bibliometric approach. Figure 4 shows the bibliometric anal-
ysis of the review articles on UHI studies by keyword and time (as was obtained 
from the filtered scientific publications). This visualization was implemented using 
VOSviewer software, which identified the relationship and keyword co-occurrences 
in the literature [25]. The visualization colors reflect the distribution of the average 
keyword-occurrence times, which was generated through an internal normalization 
process by VOSviewer. Put differently, the year ranges that are shown in the fig-
ure do not represent a fixed chronological time division; rather, they are arranged 
based on the frequency and temporal distribution of the keyword occurrences 
across the entire amount of data. In this figure, the dark-blue to light-blue colors 
reflect keywords  that appeared earlier  (2014–2018), and the green to light-yellow 
colors indicate those that appeared more recently and are relevant to recent stud-
ies (around 2019 through early 2024). Dominant keywords such as urban heat is-
land, satellite remote sensing, land surface temperature, MODIS, and NDVI formed 
the main nodes with high association levels, thus reflecting the main focus of the 
UHI literature over the past decade. Furthermore, the latest trends are shown in yel-
low; they include keywords such as Landsat 8, time series, heat waves, and regres-
sion; these indicate the increasing attention to high-resolution data and time-series 
analysis in the UHI studies.

Figure 5 shows that the Scopus-detected journal publications on satellite 
remote-sensing-based UHIs were mostly published by seven web-based publishers. 
The International Journal of Remote Sensing published web-based journals on UHIs 
between  1992 and  1998. The web-based publication of The International Archive of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences (International So-
ciety for Photogrammetry and Remote Sensing  [ISPRS] Archives) started in 2000. 
The ISPRS Journal of Photogrammetry and Remote Sensing first published a journal 
on UHIs in 2003. The Proceedings of SPIE (The International Society for Optics and 
Photonics) published 29 journals from 2005 through early 2024. In 2012, Remote Sens-
ing began publishing on UHIs through 2023, accounting for 21 web-published jour-
nals. However, The International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences (ISPRS Archives) accounted for most of the journals on 
satellite-based UHIs that were detected by Scopus between 1991 and early 2024. Al-
though the places that the web publication of Remote Sensing of Environment was not 
detected by Scopus between 2019 and early 2024, web-based journal publications 
by Proceedings of SPIE were detected between  2005 and  2021. Furthermore, Re-
mote Sensing (Multidisciplinary Digital Publishing Institute, MDPI) was among the 
most frequently chosen journals for publishing UHI studies between 2012 and 2024.
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3.	 Identification of Urban Heat Island Characteristics  
Based on Sensors, Algorithms, and Accuracy

The reviewed studies generally developed a novel approach for identifying and 
mapping the spatial distributions of UHIs based on sensor types, algorithm types, 
and accuracy.

3.1.	 Sensors

As has been demonstrated by several studies, satellite remote sensing offers sig-
nificant benefits in UHI estimations owing to its ability to provide surface-radiance 
and surface-emissivity data [28]. The electromagnetic spectrum range (with wave-
lengths of 3–35 μm) is known as the TIR band [29]. Furthermore, the radiation in-
tensity and presence of atmospheric windows are key drivers of the selections of 
relevant spectral bands within this range [28]. A very effective atmospheric range 
for remote sensing exists between  8  μm and  14  μm (where most remote sensors 
are configured to measure the thermal radiative characteristics of ground materi-
als) [14, 28]. The existing TIR satellite sensors recently provided spatial resolution 
and temporal coverage data that can be utilized to estimate the land-surface tem-
perature (LST) – a significant parameter for measuring the radiative temperature of 

Fig. 5. Number of UHI articles per year by publication
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the Earth’s surface [2]. The thermal remote sensing of urban surface temperatures 
is a typical method for monitoring LSTs to modify a surface-energy balance [2]. The 
generated radiation is measured as a digital number (DN); after this, it is transformed 
into temperature data [5]. Satellite TIRS measures the top of the atmosphere (TOA) 
radiance that is emitted by the Earth’s surface and atmosphere, including surface-
emissivity-determined TOA radiances (built-up areas, vegetation, bare soil, etc.), the 
atmospheric attenuation (water vapor and aerosols), the angle at which a satellite 
sensor receives the radiation, the atmospheric window at 10–12 µm, and the rela-
tively low absorption of the land-surface-emitted IR  radiation  [5]. Therefore, this 
spectral region is used to derive the LST using one or more IR bands [2].

Table 1. TIRS satellite source

Satellite Acquired Wavelength  
[μm]

Spatial 
Resolution

[m]

Temporal 
Resolution 

[days]
Band Data Available

Landsat 4 TM 10.40–12.50 120 16 6 1982–1993

Landsat 5 TM 10.40–12.50 120 16 6 1984–2011

Landsat 7 ETM+ 10.40–12.50 60 16 6 1999–present

Landsat 8 OLI TIRS 10.60–11.19
11.50–12.50 100 16 10

11 2013–present

Landsat 9 OLI2 TIRS2 10.30–11.30
11.50–12.50 100 16 10

11 2021–present

MODIS Terra 10.78–11.28
11.77–12.27 1000 2 31

32 1999–present

MODIS Aqua 10.78–11.28
11.77–12.27 1000 2 31

32 2002–present

ASTER Terra

8.125–8.475 
8.475–8.825 
8.925–9.275 
10.25–10.95 
10.95–11.65

90 2

10
11
12
13
14

1999–present

As presented in Table 1, the most conventional satellite sensors for investi-
gating LSTs include Landsat, the moderate-resolution imaging spectroradiome-
ter (MODIS), and the Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer (ASTER). Several studies have utilized data from polar and/or geostationary 
satellites, which prioritized the temporal mapping of the studies’ regions [30, 31].
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Landsat

The Landsat mission began in 1972; however, it took another decade to begin 
collecting thermal data using Landsat 4 and 5 TMs [14]. TIR radiation is captured 
by Band 6, which operates day and night (although nighttime observations are often 
preferred owing to the absence of solar heating)  [32]. The instantaneous fields of 
view for this sensor are 30 × 30 m in Bands 1–5 and 7 and 120 × 120 m in Band 6 [33]. 
Landsat  7 (the  ETM+) is comprised of a fixed-scanning multispectral radiometer 
with eight spectral bands, including a panchromatic band and a thermal band [34]. 
The spectral resolution of the bands is within the 0.45–12.5 µm range, and its spatial 
resolution is 30 m (except for Band 6 [60 m – resampled to 30 m] and the panchro-
matic band [15 m]) [35]. Landsat 8 (the TIRS and operational land imager [OLI]) is 
comprised of one panchromatic band and eight multispectral bands, with resolu-
tions of 15 m and 30 m, respectively [33]. TIRS is comprised of two thermal bands, 
with a resolution of 100 m; its data is resampled to 30 m [36].

The authors of  [37] employed the Landsat  5  TM and Landsat  8  OLI satellite 
sensors to determine LU and land cover (LC), LULC, and LST change patterns as 
well as investigate the impacts of LULC on LST in the Rajshahi City Corporation 
area in 1999, 2009, and 2019. Also, [38] employed the thermal band potential of the 
Landsat sensor to monitor the impact of the rural-urban transition on the ecosystem 
and LST. This study employed LULC classification maps from 1995 to 2016 to evalu-
ate the spatiotemporal dynamics of urbanization at the urban, suburban, sub-rural, 
and rural levels in Lucknow (the capital of Uttar Pradesh, India) [38]. The authors 
of [39] employed Landsat’s TM and ETM+ to retrieve surface-temperature changes 
in Egypt during different periods (1990, 2003, 2013, and 2016). The results indicated 
shifts in  LULCs and their correlations with an increases in  LSTs  [39]. They com-
pared the field data and LST estimations that were obtained by several techniques. 
Their adoption of valor emissivity and the single-channel equation enhanced the 
accuracy of the result and brought it closer to the ground-truth temperature [39]. 
The authors of [40, 41] applied Landsat 5 TM and Landsat 7 ETM+ imagery to envi-
ronmental and climate studies. These sensors generated spectral bands in the visi-
ble (Vis), near-IR (NIR), shortwave IR, and TIR regions [41]. With a wavelength range 
of 10.4–12.5 µm, the acquired thermal band (Band 6) emitted longwave radiations 
from the Earth’s surface and was conventionally employed for LST estimations [40].

Moderate-Resolution Imaging Spectroradiometer
The MODIS sensor aboard NASA’s TERRA/AQUA satellite provides enhanced 

spatial and spectral resolutions; these enable high-precision high-accuracy measure-
ments of urban thermal environments and ecosystem processes [42]. MODIS is a sat-
ellite that collects data from the Earth’s surface at regular intervals; it produces out-
comes with varying spatial resolutions [32]. MODIS is onboard NASA’s Terra (1999) 
and Aqua (2002) satellites; it exhibits a spectral resolution of 36 bands, which are 
divided into the Vis, NIR, and IR wavelengths (comprised of Bands 20, 22, 23, 29, 
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31, and 32, which are centered at 3.79, 3.97, 4.06, 8.55, 11.03, and 12.02 µm, respec-
tively) [43]. Exhibiting a revisit time of every one or two days, MODIS exhibits low 
spatial resolutions; Bands 1 and 2, 3–7, and 8–36 exhibit spatial resolutions of 250 m, 
500 m, and 1 km, respectively [18]. MODIS sensors can measure the physical and 
biological properties of the oceans and land as well as the physical properties of the 
atmosphere [44].

Their thermal data [44] exhibits a resolution of 1 km, thus ensuring the appli-
cability of its products to larger regions. Furthermore, they provide several prepro-
cessed products for users, such as ocean-surface temperatures, ice, snow, evapo-
ration, precipitation, and LST (with daytime and nighttime data), and emissivity, 
each other from the  MOD11C3, MOD11A1, and  MOD11A2 products  [5]. Sensors 
with higher temporal resolutions such as the MODIS sensors on the Terra and Aqua 
satellites can monitor different scales of UHI variations. The eight-day L3 Global 
1 km MOD11A2/MYD11A2 SIN  Grid  LST/emissivity product was used to detect 
anthropogenic thermal changes and the urban/peri-urban climate  [45]. Further-
more, the analysis encompassed several heatwave events, identifying the summers 
of 2003, 2007, and 2010 as periods of extreme surface-temperature anomalies [46]. 
The authors of [47] employed the mean surface temperature derived from a series 
of remote-sensing imagery to examine the spatial and temporal effects of LC zones 
on LST  changes that were observed from the EOS-Aqua-MODIS eight-day prod-
uct (MYD11A2) for daytime (13:30), with a spatial resolution of 1000 m. They also 
examined these effects on the environmental, social, and governance (ESG) chang-
es throughout urbanization using the mean ESG  values for July and August of 
both  2005 and  2015  [47]. The high-precision and large area coverage advantages 
of the MODIS LST data have resulted in their wide adoption in surface UHI stud-
ies [13, 48].

Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTER records images in 14  spectral bands at spatial resolutions of  15,  30, 

and 90 m for the Vis and NIR bands (Bands 1–3), shortwave IR bands (Bands 4–9), and 
TIR  bands (Bands  10–14), respectively  [49]. Daytime and nighttime ASTER  data 
is available, providing significant opportunities to study the diurnal variation 
of UHI  intensities  [50]. Attributed to its high spatial and thermal sensitivities, 
ASTER has been widely deployed for estimating LSTs in urban areas [50].

In a recent study by [49], the authors evaluated LST products that were derived 
from ASTER  imagery driven by a temperature-emissivity separation  (TES) algo-
rithm against two independent reference data sets: (a) ASTER LST products (as ad-
vanced products that are generated through TES), and (b) Landsat LST data (which 
has been independently generated by various methods between 1985 and 2017) [49]. 
The comparison results demonstrated the superiority of ASTER in capturing 
fine-scale thermal variabilities in urban areas, making it a reliable data source for 
UHI analysis.
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3.2.	 Algorithms

UHI is based on the correlation with LST, which is determined by processing 
the thermal bands of satellite images [51]. To compute LST using Landsat, two lev-
els of data (NIR and red bands) from the satellite data must be processed. Landsat 
Collections Level-1  data can be rescaled to TOA  spectral reflectance and/or  TOA 
spectral radiance (Lλ) using the radiometric rescaling coefficients that are provid-
ed in the metadata file that is delivered with the Level-1  product. The metadata 
file also contains the thermal constants for converting the thermal band data to the 
TOA brightness temperature [52].

The conversion from DN to an Lλ physical quantity is defined as the radiant 
flux in each direction considering a surface that is normalized to the surface area 
and unit solid angle; this is calculated by Equation (1) using the thermal band [53]:

	 L cal LL M Q Aλ = + 	 (1)

where: Lλ – TOA spectral radiance [W/(m2·srad∙μ)], ML – band-specific multiplica-
tive rescaling factor from the metadata (RADIANCE_MULT_BAND_x, where x  is 
the band number), AL – the band-specific additive rescaling factor from the metadata 
(RADIANCE_ADD_BAND_x, where x is the band number), and Qcal – the quantized 
and calibrated standard-product pixel values (DN).

Furthermore, Lλ  is converted into TOA reflectance using the rescaling coeffi-
cients in the MTL file following Equation (2) [52]:

	 calM Q Aλ ρ ρ
′ρ = + 	 (2)

where: λ
′ρ  – TOA spectral radiance [W/(m2∙srad·μ)], Mρ – band-specific multiplica-

tive rescaling factor from the metadata (RADIANCE_MULT_BAND_x, where x  is 
the band number), Aρ – the band-specific additive rescaling factor from the metadata 
(RADIANCE_ADD_BAND_x, where x is the band number), and Qcal – the quantized 
and calibrated standard-product pixel values (DN).

Thereafter, TOA reflectance with a sun-angle correction for sun illumination is 
given by Equation (3) [53]:

	
cos sinSZ SE

λ λ
λ

′ ′ρ ρ
ρ = =

θ θ
	 (3)

where: ρλ  –  the TOA planetary reflectance, and  θSE  – the local sun elevation 
angle. The  scene-center sun-elevation angle [°] is provided in the metadata 
(SUN_ELEVATION). Furthermore, θSZ – the local solar zenith angle, which is given 
by θSZ = 90° – θSE.
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The conversion to the TOA  brightness temperature  [K], proceeds via Equa-
tion (4) [53]:

	

λ

=
 

+  
 

2

1ln  1

KBT
K
L

	 (4)

where: BT  –  the brightness temperature [K], Lλ  –  the TOA spectral radiance 
[W/(m2∙srad∙μm)], K1  –  band-specific thermal-conversion constant from the 
metadata (K1_CONSTANT_BAND_x, where x  is the thermal band number), 
and K2  –  the band-specific thermal-conversion constant from the metadata 
(K2_CONSTANT_BAND_x, where x is the thermal band number).

Thereafter, the result is converted into temperature  [°C] following Equa-
tion (5) [54]:

	 BT = BT [K] – 273.15 	 (5)

The thermal band includes the emissivity  (E) of the soil and vegetation. Al-
though the radiance and temperature values can be deduced, including  E in the 
computation is key to generating an LST using the NIR and red bands. Thus, the 
normalized difference vegetation index (NDVI) is first calculated following Equa-
tion (6) [55]:

	   
  

NIRband REDbandNDVI
NIRband REDband

−
=

+
	 (6)

NDVI is conventionally used to derive the fraction of the vegetation cover (FVC) 
as expressed in Equation (7) [56]:

	
2

bare

veg bare

NDVI NDVI
FVC

NDVI NDVI

 −
 =
 − 

	 (7)

where NDVIbare and NDVIveg are the NDVI values of the completely bare and fully 
vegetated pixels, respectively. Following previous studies, both threshold values 
were set to NDVIbare = 0.2 and NDVIveg = 0.86; however, several studies have employed 
NDVIveg = 0.5 [56]. The authors of [57] demonstrated that values between 0.8 and 0.9 
are more appropriate for realizing high-resolution images. Pixels with NDVI values 
that are below NDVIbare and above NDVIveg are considered to be completely bare and 
fully vegetated, respectively.
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Thus, the E values over vegetated areas at any given time may be derived using 
the vegetation-cover method, which is defined by Equation (8) [56]:

	 ( ), ,1b b veg b bareFVC FVCε = ε + − ε 	 (8)

where εb,veg and εb,bare are the emissivities (Es) of the vegetation and bare grounds, respec-
tively, for a given spectral band b. The Es of the vegetated surfaces typically exhibit rel-
atively small variations in the TIR region; therefore, this value is prescribed to εveg = 0.99.

LST retrieval is realized following [58], as is shown in Equation (9):

	
1 ln

s
BTT
BT

=
  λ
+ ⋅ ε  ρ  

	 (9)

where Ts is LST [K], BT is the at-sensor brightness temperature [K], λ is the wave-
length of the emitted radiance (11.5 μm), ρ is defined as h ∙ c/kB = 1.438 ∙ 10–2 m ∙ K 
(where: h – Planck’s constant, c – the speed of light in a vacuum, kB – Boltzmann’s 
constant), and ε is the spectral surface emissivity.

Several studies have explored the techniques for retrieving LSTs, and three wide-
ly utilized methods have emerged: the mono-window algorithm (MWA) by [59], the 
split-window algorithm (SWA) by [60], and the single-channel (SC) method by [61]. 
Originally designed for TIR remote sensing in different contexts, these three algo-
rithms must be enhanced when deployed with Landsat 8 TIR data. The authors of [62] 
developed an improved MWA (IMWA) technique that consolidates on the MWA that 
was developed in [59], thus allowing for its effective usage with Landsat 8. The MWA 
that was developed in  [59] is expressed in Equation  (10). This algorithm requires 
three parameters: the effective mean atmospheric temperature  (Ta), land-surface 
emissivity  (LSE,  ε), and atmospheric transmittance  (τ); however, Equation  (10) is 
proposed for TM images. As the imagery that is employed in this study included 
Landsat 8 images, this method must be enhanced to make it suitable for new data. 
The authors of [63] enhanced the algorithm, making it suitable for Band 10 of Land-
sat 8. This enhanced algorithm is called IMWA and is expressed in Equation (11):
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where a10 and b10 are constants with different values in different temperature rang-
es (as summarized in Table 2). Furthermore, C10 and D10 are functions of LSE (ε10) 
and τ (τ10), and the calculation methods are as shown in Equations (4) and (5), respec-
tively (where Ta is the effective mean atmospheric temperature).
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SWA  was originally proposed by  [60]; it is an algorithm for observing the 
ocean-surface temperature based on AVHRR TIR data and based on the principle 
that two adjacent TIR bands exhibit different absorption characteristics. The attenu-
ation information of the atmosphere on the thermal radiation can be obtained based 
on the difference between the brightness temperatures of the two TIR bands (12) [60]:

	 0 1 10 2 11sT A A T A T= + − 	 (12)

where Ts  is the  LST, and  T10 and  T11 are the brightness temperatures of Bands  10 
and 11, respectively. Furthermore, A0, A1, and A2 are the parameters.

The SC method was proposed in 2003 and modified in 2009 by  [61]. This al-
gorithm requires only two input parameters: LSE  (ε), and the atmospheric water 
vapor content (ω). Differing from MWA, SC does not require the Ta parameter, and 
the ω must not be calculated to  τ. These advantages reduce the error of the final 
retrieved LST due to the Ta error [61]. Owing to these advantages, the SC algorithm 
has been adopted by many scholars for various TIR remote sensing, such as Land-
sat  5  TM, Landsat  7  ETM+, MODIS, ASTER, and ENVISAT AATSR. The authors 
of  [56] optimized the SC method for Landsat 8 and calculated the corresponding 
parameters using Equation (13):

	 ( )1 2 3
1

s senT L 
= γ Ψ +Ψ +Ψ + δ ε 

	 (13)

where Ts  is the  LST, ε  is the  LSE, and γ and δ are two parameters depending on 
the Planck function; they can be calculated. Lsen and Tsen are the at-sensor registered 
radiance  [W/(m2·sr·µm)] and the at-sensor brightness temperature, respectively. 
For Band 10 of Landsat 8, bγ = 1324. The atmospheric function parameters are Ψ1, 
Ψ2, and Ψ3.

For the surface UHI, the UHI intensity is calculated (after identifying the LST) 
as the temperature difference between the urban and rural areas (Equation (14)) [64]:

	  urban ruralSurfaceUHI ST LST= − 	 (14)

Urban and rural zones are typically delineated using LC classifications that are 
derived from the same satellite data set or external products such as GlobeLand30, 
MODIS LC, or high-resolution maps. Averaging the LST values across each zone 
enables the spatial and temporal assessments of UHI intensities [65].

3.3.	 Accuracy

The authors of  [37] examined  UHI using Landsat image data and support 
vector machine (SVM) classification based on surface temperatures, with reported 
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accuracies of 96.86%, 96.15%, and 95.55% in 1999, 2009, and 2019, respectively. The 
authors of  [66] integrated the maximum likelihood classification technique with 
vegetation-index and surface-temperature algorithms, obtaining accuracies of 
94.88%, 93.65%, and 94.82% in 1999, 2009, and 2019, respectively [67].

In China, UHI  studies have been conducted using various sensor-algorithm 
combinations and yielding varying accuracy degrees. The authors of [46] compared 
the effects of temperature changes between urban and rural areas. Furthermore, the 
relationship between LST and LU types was investigated at various levels. The re-
sults indicated that the five LU types that were retrieved by the object-oriented tech-
nique (i.e., vegetation, normal construction land, ultraviolet  (UV), water, and un-
used land) were optimized for further studies, as they demonstrated good accuracy 
(with an overall accuracy [OA] of 88.70%) [68].

The authors of [69] employed the same LST and NDVI techniques, obtaining 
kappa coefficients of  0.96 and  0.95 in  1998 and  2009, respectively. The results of 
the referenced study indicated that optical and thermal remote-sensing techniques 
could be employed to investigate the environmental characteristics of urban areas. 
Furthermore, [70] applied the LST algorithm to the observation of elevated heat in-
tensities between 1985 and 2010. To measure landscape patterns and changes more 
accurately, the researchers employed a novel locally optimized separability enhance-
ment index that was integrated with decision rules (the SEI-DR approach) to solve 
the classification-accuracy problems (which are characteristic limitations of urban-
environment studies). This novel SEI-DR  approach obtained an  OA  of  88.00%.

By focusing on several biophysical variables, [71] employed satellite and in situ 
monitoring data to explore the influences of urban development and UHI heatwave 
occurrences in Romania’s Bucharest metropolitan area. Employing the NDVI algo-
rithm, remote-sensing data was obtained from the Landsat TM/ETM+ sensor and 
MODIS  Terra/Aqua time series to assess urban LC/temperature interactions be-
tween 2000 and 2016. Overall, the study recorded an OA of 89.00% [45].

The authors of  [36] measured  LST from Landsat  images, demonstrating that 
the classification accuracy increased when all of the data was added to the original 
Landsat data. Thus, the overall classification accuracies that were obtained by Land-
sat 7 ETM+ and Landsat 8 OLI/TIRS were 88.66% and 91.31%, respectively. More-
over, increased urban areas, industries, GHGs, vegetation, irrigated agriculture, and 
dry agriculture were observed during the study period (13 years), whereas the bare 
soil and rock areas decreased significantly.

The authors of [72] employed the ESG framework to interpret the UHI phenom-
ena from the different seasons of 2018 in Mashhad, Iran, revealing that the observed 
UHIs exhibited different behaviors in different seasons regarding location and in-
tensity. Therefore, extracting similar features to the UHIs’ behaviors was crucial. 
The features of the UHI emergence behaviors were analyzed by statistical meth-
ods, including principal component analysis  (PCA) and fixed multivariate regres-
sion. The PCA results indicated that the following four indices were key to studying 
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UHI emergence: NDVI, the normalized difference built-up index (NDBI), the nor-
malized difference bareness index, and the normalized difference water index. Ad-
ditionally, these indices could be used to develop a fixed model for examining UHIs 
across different seasons. Furthermore, the results of the fixed multivariate regression 
model with different thresholds revealed that it obtained an average OA of 82.15% 
for the different seasons in Mashhad [72].

Some researchers [4, 16, 39, 44–47, 70–75, 77–93] estimated that the UHIs derived 
from Landsat using LST algorithms had the levels of accuracy shown in Table 2.

4.	 Results

Different UHI identification techniques delivered outputs with varying OA lev-
els (Table 2); however, the precision of these methodologies could have been im-
pacted when transferring a method from one area to another, as several variables 
(including topographical and seasonal fluctuations) might have affected the algo-
rithmic outcomes [76].

Table 2. UHI identification using remote-sensing technology

Author Sensor Algorithm Accuracy [%]

[77] Landsat 5 ETM, 7 ETM+, and 8 OLI LST OA = 97.00

[39] Landsat (TM/ETM+/OLI) LST

OAs:
2002 = 0.87
2011 = 0.85
2021 = 0.92

[78] Landsat 5 TM Landsat 8 LST

OAs:
1999 = 96.86
2009 = 96.15
2019 = 95.55

[16] Landsat 5, 7, and 8 LST

Overall Classification Accuracies:
Random Forest = 86.41

SVM = 89.93
Multi-Layer Perceptron = 90.28

[79] Landsat 8 LST OA = 97.00

[80] Landsat LST

OAs:
1995 = 90.00
2005 = 92.00
2016 = 94.00

[81] Landsat 8 LST OA = 89.86

[82] Landsat 8 LST, NDVI

OAs:
1992 = 85.18
2002 = 87.87
2017 = 88.75
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Author Sensor Algorithm Accuracy [%]

[83]

Landsat Multispectral:
Inland City

1998 = Landsat 5 TM
2000 = Landsat 7 ETM
2007 = Landsat 8 OLI

2015 = OLI
Coastal City

1998 = Landsat 5 TM
2000 = Landsat 7 ETM
2007 = Landsat 7 ETM
2015 = Landsat 7 ETM

LST

OAs:
Inland City
1998 = 89.87
2000 = 89.44
2007 = 87.78
2015 = 88.33
Coastal City
1998 = 91.56
2000 = 95.56
2007 = 93.33
2015 = 89.44

[84] Landsat 8 LST, NDBI, 
NDVI

OAs:
2014 = 82.40
2019 = 84.20

[74] Landsat 5 TM and Landsat 8 OLI/TIRS LST
OAs:

1990 = 95.02
2017 = 98.94

[85] Landsat 5 TM LST

OAs:
Beer Sheva, Israel

1990 = 88.00
2000 = 92.67
2010 = 88.00

Hotan, China
1990 = 93.60
2000 = 89.00
2010 = 90.33

Jodhpur, India
1990 = 82.29
2000 = 80.00
2010 = 82.57

[75] Landsat images (TM, ETM, and OLI) LST

OAs:
1990 = 83.67
2003 = 95.65
2013 = 98.04
2016 = 89.59

[70] Landsat TM and Landsat ETM+ LST OA = 88.00

[86] Landsat 5 LST
OAs:

1992 = 88.00
2011 = 89.00

[4] Landsat’s TM and ETM+ imageries LST, NDVI, 
NBDI

OAs:
1990 = 91.30
2000 = 86.52
2005 = 87.08
2009 = 98.29

Table 2. cont.
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[87] Landsat 5/4 (TM) LST, NDVI
OAs:

1990 = 90.40
2009 = 84.40

[88] Landsat 7 ETM and Landsat 5 TM LST, NDVI
OAs:

1999 = 95.00
2007 = 96.50

[89] Landsat 5 LST OA = 89.09

[90] Landsat MSS and Landsat TM LST OA = 90.00

[73] Landsat 4, 5, 6, 7, and 8 LST, NDVI

OAs:
Medan = 98.00

Bandung = 80.00
Makassar = 70.00

[91] Landsat 5, Landsat 8, and MODIS LST OA = 88.00

[92] Landsat 5, Landsat 8, and MODIS LST OA = 88.00

[93] Landsat 7ETM+, Landsat 8 OLI TIRS, 
and MODIS LST, NDVI

City-Based OAs:
Colombo

2000 = 80.00
2009 = 83.00
2019 = 90.00

Delhi
2000 = 79.00
2009 = 82.00
2019 = 91.00

Dhaka
2000 = 78.00
2009 = 83.00
2019 = 88.00

Kabul
2000 = 77.00
2009 = 82.00
2019 = 86.00

Karachi
2000 = 79.00
2009 = 86.00
2019 = 88.00
Kathmandu
2000 = 81.00
2009 = 85.00
2019 = 91.00

Thimphu
2000 = 78.00
2009 = 81.00
2019 = 87.00

[47] Aqua-MODIS and Landsat TM/ETM+/OLI LST OA:
2005 = 85.03

Table 2. cont.
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Author Sensor Algorithm Accuracy [%]

[45] MODIS Terra/Aqua, Landsat TM/ETM+ LST OA = 89.00

[46] MODIS, Landsat 5, and Landsat 8 LST OA = 0.887

[44] MODIS LST

Accuracy:
ResNet = 0.81

GoogLeNet = 0.85
VGGNet = 0.84

CNN = 0.87

[72] MODIS LST

OA = 82.15
Season-Based OAs:

Heat = 83.54
Cold = 59.10

Table 2 summarizes the employed satellite sensors and algorithms as well as their 
observed OAs from remote sensing-driven UHI studies. Generally, Landsat provides 
time series data and facilitates higher-resolution LST estimations, with OAs ranging 
from 70.00% to 98.00% (as reported by [16, 73, 77, 83, 91, 93], who applied time series 
data to LST estimations). The LST method has been widely employed in UHI stud-
ies owing to its significance as a key component for realizing energy balance as well 
as its usefulness as a crucial climatological factor. The LST-estimation technique can 
accurately enable the identification of the spatial patterns of UHI distributions with-
in different areas. Besides the LST algorithm, a vegetation-index algorithm exists 
that contributes to the occurrences of UHI phenomena [94].

5.	 Directions for Future Satellite-Based Urban Heat Island Studies

The authors of [95] recommended that future studies should cover many topics: 
first, integrating daily satellite thermal data from the Visible Thermal Imager Radi-
ometer Suite data set with in situ data from a network of meteorological stations can 
ease the understanding of the UHI mechanism regarding LULCs; second, future re-
lated studies must consider the impact of LULC-type distributions on the emergence 
of UHIs in urban areas; and third, understanding how human activities and other 
variables can mitigate the impacts of UHIs on global warming is crucial. To collect 
LULC data over a period, imagery and preprocessing (including data normalization 
and time-series-image overlays) are essential [42]. Furthermore, algorithms such as 
random forest (which rely on computations and the use of training and testing sam-
ples) should be used to enhance the LULC-categorization accuracy [96].

Notably, Google Earth Engine  (GEE) is garnering attention in environmental 
and urban studies because of its large collection of geospatial data sets (such as 

Table 2. cont.
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Landsat and MODIS)  [97]. However, ecological and urban developers have en-
countered three key challenges when using GEE; thus, its full potential cannot be 
realized in current applications that are limited to simple mapping [91]. Research-
ers must overcome these technological hurdles by simulating real-world environ-
ments via image processing. Furthermore, the review results have revealed that 
many researchers are unaware of the enhanced geographical-processing capabili-
ties and large geospatial data sets of GEE [98]; thus, its potential to drive ecologi-
cal and urban modeling remains unexplored. Future studies must aim to enhance 
GEE performance via specialized tools to model ongoing urban expansions under 
the UHI effect [42]. As directions for future studies, [98] recommended that remote 
sensing could be deployed in UHI  studies in order to obtain good results with 
high accuracy. Moreover, Landsat and MODIS satellite imagery can be integrated 
into UHI studies, as both tools can provide large area coverage with good imaging 
quality  [99]. GEE can also be optimized for long-term UHI  studies owing to its 
criticality [91].

The application of satellites to the study of UHI phenomena has attracted sig-
nificant interest owing to their capabilities to observe and assess temperature fluctu-
ations in urban areas. We recommend that future satellite-based UHI studies priori-
tize the following six crucial areas.

5.1.	 Data Resolution Enhancement

Future satellites must be designed to offer enhanced spatial- and temporal-
resolution data, which will facilitate very detailed analyses of low-scale UHI  im-
pacts. This advancement might enable researchers to investigate micro-UHIs within 
cities, thus identifying specific regions that exhibit the most significant heat-related 
issues [80]. The utilization of remote-sensing-obtained time-series data that is char-
acterized by high geographical resolutions and large temporal coverage is becoming 
increasingly popular in UHI-related studies [100]. This can be realized by computa-
tion, ML, deep-learning (DL), and GEE software applications [101]. Future studies 
must also focus on exploring techniques for measuring LSTs and LSEs via hyper-
spectral-TIR, multispectral-temporal, and TIR–microwave data [16]. This study will 
assess the impacts of aerosols and cirrus clouds. Moreover, the exploration of urban 
development strategies for mitigating the UHI phenomenon includes an investiga-
tion of methods such as enhancing the presence of vegetation and water surfaces.

5.2.	 Integrating Satellite Data with Ground-Based Sensors

Satellite data provides macrolevel perspectives via thermal imaging and 
LST measurements, thus enabling the identifications of heat concentrations across 
large areas [98]. This broad coverage complements high-resolution data that is ob-
tained from ground-based sensors, which capture local environmental factors such 
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as microscale temperatures and air quality [102]. These sensors are critical for com-
prehensive analyses of the varying effects of UHIs across different parts of a city. 
The integration of these data streams can be achieved through advanced data-fusion 
techniques and ML, which enable the synthesis of multiple data sets into a cohe-
sive analysis framework [51]. Geographic information systems are particularly valu-
able in this context, as they drive the visual mapping of data from multiple sources, 
thereby enabling a comprehensive spatial analysis of heat distribution  [103]. This 
integrated approach deepens the understanding of UHI  dynamics and improves 
urban-management strategies toward mitigating the adverse impacts of  UHIs on 
human health and well-being [82]. Furthermore, real-time monitoring and predic-
tive analytics can considerably facilitate predictions of the effects of UHI, thereby 
enabling timely mitigation actions. Public-engagement platforms can involve the 
residents of a community and establish feedback channels, thus enhancing the over-
all effectiveness of monitoring and mitigation efforts [101].

5.3.	 Artificial Intelligence and Machine Learning

Innovative AI and ML techniques can improve satellite data processing, thereby 
enabling more-accurate and real-time predictions of UHI effects [104]. Additional-
ly, these technologies can detect relationships and trends that conventional analytic 
techniques might not be able to promptly recognize. Modeling plays a key role in 
UHI-phenomenon evaluation – particularly when integrating thermal data from dif-
ferent sensors [105]. ML and AI are garnering increasing attention, and cloud com-
puting platforms such as GEE can significantly impact UHI analyses by efficiently 
synthesizing big remote-sensing data sets  [51]. Thus, the combination of remote-
sensing data and station observations in such models is greatly anticipated. Future 
studies must focus on the effects of UHIs on human health, heat waves, air pollution, 
and ecological stability.

5.4.	 Climate Change Modeling

Satellite-based UHI studies can be progressively integrated with climate change 
models to predict upcoming heat trends in urban areas [104]. This can provide ref-
erences to urban planners and politicians for the developments of those cities that 
are more sensitive to climate change effects. Climate models are indispensable tools 
for studying the complex processes that control global and regional climate chang-
es [42]. An investigation of regional impacts was conducted by developing appropri-
ate temporal- and geographical-scale climate-prediction systems. The existing mod-
els exhibit large geographical coverage with limited spatial resolutions. Remotely 
collected information can be implemented in climate change modeling to analyze 
the UHI effects in urban and nearby non-urban areas [45]. This integrated approach 
must feature regional climate models and statistical downscaling models.



Satellite-Based Urban Heat Island Study: A Prisma-Based Systematic Literature Review	 27

5.5.	 Global Study of Urban Heat Islands

The global study of UHIs is being expanded by the integrations of innovative 
technologies and approaches for collecting and analyzing data. This methodology 
can provide useful insights into the influence of urbanization patterns and climatic 
changes on the impacts of UHIs, completely elucidating their effects in various en-
vironments and under various socio-economic conditions [106]. Future studies can 
identify the common factors that increase heat build-ups in urban areas as well as the 
different local variables that may impact their intensities and characteristics [84]. This 
will facilitate the developments of prediction models for the impacts of UHIs under 
various climate change and urbanization conditions. This will enable the development 
of more-efficient urban planning strategies. Comparing the impacts of UHIs on public 
health across different regions may also provide valuable insights for implement-
ing such measures as improved approaches for managing heat waves and increased 
public-awareness campaigns [10]. The utilization of satellite imagery, ground-based 
sensors, and projects (including citizen science) will provide a comprehensive data 
set for predicting patterns and developing global and regional strategies [78]. This 
method enhances our comprehension of UHIs and strengthens worldwide collabo-
ration among scientists, urban planners, politicians, and the general public, resulting 
in a more coordinated and efficient response to UHI phenomena [44].

5.6.	 Urban Heat Islands and Their Impacts

The key terms that were identified from our VOSviewer-based literature review 
include “Urban Heat Island,” “Remote Sensing,” and “LST.” In 1996, several studies 
revealed that the UHI phenomenon could intensify the impacts of heat waves by 
significantly increasing nighttime temperatures  [107]. Numerous studies have ex-
tensively highlighted the severe implications of global heat crises on public health. 
In August 2003, Western Europe experienced a significant heat wave that accounted 
for the deaths of nearly 70,000 people via dehydration, hyperthermia, heat stroke, 
and respiratory issues [108]. The grid population of the data set was used to analyze 
the population density owing to the continually changing boundaries of the urban 
wards, thus proving to be valuable.

An extant UHI  study investigated  LU and urban redevelopment, emphasiz-
ing UV mitigation [46]. The study recommended the accumulation of UV data be-
fore  2012 to predict spatiotemporal changes. Moreover, including auxiliary data 
such as points of interest could increase the accuracy of extracting LU  data  [46]. 
Nighttime LSTs may differ regionally from daytime temperatures across cities; this 
can enable effective urban environmental monitoring and control. Future studies 
must explore these differences to establish a scientific framework for identifying 
informal settlements such as slums or UV accumulations. Multi-scale segmentation 
combined with street data and UV extraction using the nearest-neighbor approach 
are possible approaches [109].
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6.	 Conclusion

The following conclusions can be deduced from the results of our review and 
analyses of satellite-based UHI research that started around 1972 through early 2024 
by focusing on characteristics based on sensors, algorithms, and accuracy. Moreo-
ver, we observed that 1991 was pivotal, marking the integrations of satellite tech-
nologies into the development of UHI monitoring and identification systems. From 
a sensor-based perspective, Landsat and MODIS represent the most frequently de-
ployed platforms for UHI studies. Landsat sensors can be used to observe UHI phe-
nomena – one of which is the thermal band that is detected on the Landsat satellite 
(Landsat 8 consists of Bands 10 and 11). Furthermore, MODIS sensor, as its frequent 
temporal resolution effectively enables the studies of temporal variations in  UHI 
such as diurnal, seasonal, and decadal variations. Moreover, satellite sensors can 
be selected based on the research time. Regarding the algorithms, the land surface 
temperature  (LST) indicator and normalized difference vegetation index  (NDVI) 
were the most deployed algorithms. Regarding accuracy, the integrations of satellite 
sensors and algorithms into UHI studies provide a promising range of accuracies. 
When conducting UHI studies, algorithms must be selected based on the specific 
characteristics of the study location and the data-collection period in order to obtain 
reliable and accurate results.

The future of satellite-based UHI monitoring is promising, with technological 
advancements driving the developments of effective techniques such as data fusion, 
gap filling, ML, and DL to enhance UHI monitoring. Adopting models that combine 
data from many sensors and fill in missing information might enhance UHI monitor-
ing by utilizing a comprehensive time series of thermal data with high spatial detail. 
These methods produce time-dense high-resolution UHI data over prolonged peri-
ods by combining data from other sensors. ML has gained attention in UHI studies; 
however, its applicability is limited to the predictions of phenomena in the natural 
environment. GEE is a cloud-based platform for large-scale geospatial analysis. It 
enables various geographical-scale UHI assessments, including local, regional, and 
global scale assessments.

Finally, future directions indicate that satellite-based UHI studies should pri-
oritize six crucial points: enhanced data resolution, satellite data integration with 
ground-based sensors, AI and ML, climate change modeling, global UHI studies, 
and UHIs and their impacts.
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