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Abstract:

Keywords:

This paper presents the functionality and research possibilities of an applica-
tion that is based on two concepts: the use of photogrammetric analysis for
LiDAR data processing (lidargrammetry), and the assignments of identifiers to
cloud points in order to be able to return to the original points after processing
without data loss and redundant processing.

The research tool has, thus far, been developed for the implementation of two
distinct LIDAR data-enhancement processes. The initial approach involves the
altimetric transformation of the LiDAR data (a process that is founded on
the principles of stereo model deformation theory), and the second process em-
ploys lidargrammetry for the purpose of 3D local point-cloud corrections, glob-
al changes, or non-rigid transformation. This is achieved by applying blocks of
lidargrams and their subsequent matching and adjustments.
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1. Introduction

The improvement of LIDAR data has been a subject of research since this tech-
nology was first applied to mapping; the main reason for this is its limited accuracy,
and the main factors are the errors in the point coordinates. This paper presents
a research tool with the potential to improve the processing of LIDAR data for ge-
ometric enhancement; it was created to implement a new approach to LiDAR data
processing. This approach includes two basic concepts: photogrammetric analysis
for LiDAR processing, and LiDAR point identification by assigned identifiers to re-
store the original terrain points by the intersections of homologous points (which
has never been used in any other known tool).

PyLiGram is a tool for effective and innovative LiDAR data processing based
on photogrammetric algorithms and the stored LiDAR 3D point-image relationship,
which is the main objective of the presented research.

The following chapter (divided into two parts) presents the state of the art of
LiDAR geometric processing. The first part presents the basics of processing, data-
evaluation methods, and enhancement methods and gives an overview of the meth-
ods that have been implemented in the software that is available on the market. The
second part presents enhancement methods based on the integration of LIiDAR data
with image data. In this section, we present methods that have been proposed by
several authors and software that has been designed to process both types of data in
order to increase the accuracy of LiDAR data.

In the third chapter, we present our tool; we start by describing the interface and
its options and functionalities. Lidargram generation as synthetic-image sampling is
the first functionality that is presented and discussed. The process is controlled by
several parameters. Two basic problems of the process are (a) empty pixels (pixels
without the projection of any LiDAR point) and (b) occlusions (the problem of the
geometric filtering of the first plane to project on the lidargram plane). The next func-
tionality that is presented is LiDAR strip adjustment using virtual lidargrams and
the stereoscopic model-deformation theory. The last functionality that is described
is the use of PyLiGram for extended workflow (also using external software).

The next chapter of the implementation results and discussion presents the fac-
tors of lidargram generation: how the used parameters influenced the adjustment
results in four tested adjustment algorithms.

After a detailed presentation of the basic features, we outline how we overcame
the problems and list the known limitations of the methods that were used. The ca-
pabilities of PyLiGram are related to specific research questions of a new approach
to LiDAR and photogrammetric data integration. The comparison with mainstream
LiDAR-processing software is done within this research and has been published in
separate papers.

In the next chapter, we present our research plans that led to the development
of our software.
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2. State of the Art
2.1. LiDAR Processing

Itisafactthataerial laser scanning (ALS) hasbeeninuse for more than 25 years[1].
LiDAR sensors are used in platforms with other sensors such as GPS and IMU [2].
Point-cloud registration is one of the most important and widely researched prob-
lems in LiDAR technology [3]. ALS is a mature and developed technology that has
been applied worldwide. Practical aspects have been discussed, including differ-
ent scanning systems, data-processing methods, and software [4]. UAV scanning
is becoming increasingly popular; this is mainly due to the advent of lightweight
scanners [5].

Many manufacturers offer aerial-mapping platforms that are equipped with
scanners. LiDAR is as versatile as photogrammetry and is used for a wide range
of applications; these include environmental mapping (such as agriculture [6], for-
estry [7, 8], and flood analysis [9]) and engineering projects such as dam monitor-
ing [10], building information modeling (BIM) [11], pipelines [12], power lines [13],
and architecture [14]. It is also used in archaeology [15].

LiDAR technology has been primarily used as a tool for acquiring digital terrain
models (DTMs) and digital surface models (DSMs); as a result, the issue of its geo-
metric quality (such as accuracy, among other factors) has been a key concern and
the subject of investigations [16-18]. A number of techniques have been developed to
address specific groups of methods that are aimed at improving accuracy, including
platform calibration [19-22], trajectory adjustment [23, 24], strip adjustment [25-30],
and the application of ground control [31, 32]. Today, LiDAR data is analyzed us-
ing machine learning [33, 34] and simultaneous location-and-modeling (SLAM)
methods [35].

The evaluation of LiDAR data has been a prominent feature of much research.
LiDAR data from UAVs has been the subject of increased investigation and improve-
ment as the technology has matured. The accuracy of LiDAR has traditionally been
investigated in two ways: within stripes/between stripes [36, 37], and without tra-
jectory data [38]. As UAV laser scanning (ULS) data gained popularity and its accu-
racy came under scrutiny, the issue was later investigated in general cases [39] as
well as exclusively with direct georeferencing [40, 41] and in the context of specific
applications. Bakuta et al. [5] evaluated UAV LiDAR data for the levee monitoring
of the Vistula River. Mayr et al. [42] presented two key components of errors in the
ULS of grass slopes in the Alps; they assessed registration errors, surface roughness,
and positional uncertainties as functions of range, incidence angles, and beam di-
vergence. Fuad et al. [43] evaluated UAV LiDAR as a source of data for DTM gen-
eration, and Kucharczyk et al. [44] investigated the accuracy of UAV LiDAR for
vegetated terrain.

LiDAR data processing is mostly based on commercial software: the most pop-
ular applications are TerraMatch [45] and Riegl’s RiProcess [46]. There are many
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other solutions for data collection, analysis, processing, and visualization, and sev-
eral reviews have been published [4, 47]. The next generation of LiDAR software is
now being developed using artificial intelligence and machine learning [48].

2.2. Data Integration for Enhancement

LiDAR data is increasingly being acquired as parts of combined missions. Pho-
togrammetric data can be adjusted with a high degree of confidence. The idea of
LiDAR data enhancement based on the idea of integration seems to be an obvi-
ous approach. Several reviews on combined registration methods of imagery and
LiDAR data have been published [49-52].

The first data-enhancement process is the calibration of the sensor platform;
the trend in research worldwide is to calibrate the platforms without ground-
control points or a test field [53, 54]. The calibration of bore sights and eccentrics
can significantly increase the accuracy of the data. Another integration option for
improving the data is a bundle-block adjustment based on ground control from
LiDAR data [55, 56]. The geometric integration of data (co-orientation) can also
be done by analyzing image and LiDAR features: linear features [57], 2D/3D point
and line correspondences [58, 59], center and corner points of the extracted build-
ings [60], and other spatial constraints — with additional solutions such as Gabor
structure features [61] or the line-point similarity invariant and extended colline-
arity equation [62]. In general, there are several successful methods that use dense
image matching and, further, use a photogrammetric point cloud to integrate it with
LiDAR data to improve its accuracy [63] or perform enhancement analysis based on
such a hybrid data set [64]. The iterative closest-point algorithm is a typical solution
for the geometric adjustment of two sources of data [65]. There are several exam-
ples of using depth maps for the co-registration of hybrid data as a further use of
dense matching results: depth map stereo [66], or depth maps for point-and-line-
feature searches [67]. Point clouds from dense matching and LiDAR can also be
refined by quality-based registration [68]. Methods that optimize trajectory data as
base LiDAR data are widely represented; these are usually non-rigid methods [69].
The 3D-2D correspondences are used to improve the trajectory [70-73] or for the si-
multaneous data adjustments of all platform sensors [29]. Poppl et al. [74] presented
a comprehensive review of all of the contemporary trajectory-estimation methods.

Our research focuses on 3D LiDAR adjustment based on a lidargrammetric ap-
proach. Lidargrammetry was originally applied as a photogrammetric approach to
LiDAR data for stereoscopy and the manual measurements of point clouds [75-77].
These images were sampled from the point clouds as central projection images
and used for stereoscopy. Furthermore, synthetic images of the point clouds (lidar-
grams) and the theory of the vertical deformation of the stereoscopic model can be
applied to LiDAR strip adjustment [78], data orientation [79, 80], and feature extrac-
tion [81-83].
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3. PyLiGram - Research and Processing Tool

3.1. General Layout and Interface

PyLiGram is a tool that was designed for LiDAR data-enhancement re-
search (Fig. 1); this is an open-source program.
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Fig. 1. General layout of PyLiGram GUI

The latest developmental beta version of the program for Windows 10 and
Ubuntu 22.04 can be downloaded via the following link: https://fotogrametria.agh.
edu.pl/~misiek/pyligram/.

The graphical user interface is divided into the following features: main menu,
view window, table of LiDAR data to be processed, table and controls of virtual
flight parameters (VFP), two-tab table of EOPs of lidargrams, status window, and
process-control panel.


https://fotogrametria.agh.edu.pl/~misiek/pyligram/
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The main menu is used to open point clouds in the ASCII format (*.asc), open
ground-control text files, and set the working directory (File menu). The Options
menu allows one to turn raster generation on or off, among other things.

The Viewer window has no interactive options; it shows the LiDAR program
footprints, ground-control points (GCPs), and the cloud during and after processing
(Options — Show cloud).

The virtual flight Table of Parameters (ToP) is the most important part of the in-
terface. The main table contains the interior orientation parameters (IOPs) of the vir-
tual camera and the exterior data for calculating the exterior orientation parame-
ters (EOPs) of the lidargrams. All of the data that is associated with each point cloud
is automatically stored in a JSON file. Additional controls and buttons are required
to process the data within any of the workflows; their functions are explained later.
The EOPs table has two tabs: the first (EO calculated) contains the EOPs that have
been calculated from the data in the ToP, while the second tab contains those EOPs
that can be imported from other software.

There are two basic workflows that can be implemented in PyLiGram; both
are dedicated to enhancing LiDAR data using photogrammetric methods and the
concept of unique LiDAR point identifiers (ULPIs), which identify an original
LiDAR point and its projections on virtual-image planes. The first workflow in-
volves the altimetric deformation of a LiDAR strip based on the theory of stereo-
scopic model deformation. The second uses lidargrammetry and external lidargram
bundle adjustment for the spatial non-rigid adjustment of LiDAR blocks or strips.

3.2. Challenges of Lidargram Generation

As mentioned above, the genesis of lidargrammetry was to create an analogue
method of measuring LiDAR data by the stereo viewing of images instead of point
clouds in the top/front/right 2D viewers of CAD applications. PyLiGram is actually
dedicated to LiDAR data enhancement, but the basis is the generation of stereo im-
age pairs of predefined IOPs and EOPs.

In addition, the raster-generation process is parallel to the assignments of IDs to
a point. Each point cloud has a unique LiDAR point identifier (ULPI); these ULPIs
allow the process of generating lidargrams to be reversed and a new point cloud to
be generated after analytical operations have been applied to the lidargrams.

After importing the point cloud into PyLiGram, all of the parameters have to
be set manually, or they can be read from a previously generated JSON file with
the same name as the point cloud. First, the focal length, pixel size, and image for-
mat are defined; after entering the ground coordinates of the start and end points,
image overlap, strip width, and average terrain height, the EOPs of the lidargrams
are calculated and inserted into the EO Calculated tab of the EOPs. Another way
to use EOPs is via a text file; EOP files can be imported using the From EO button.
Any change to the data in the Virtual Flight Parameters table results in an update of
the JSON file. The IOPs and EOPs are used, and the maximum size of the lidargram
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format is used. The process is started by pressing the Generate Frames button. The
fiducial coordinates are calculated from the ground coordinates, and each point is
assigned an ULPI. These fiducial coordinates (in millimeters) with ULPIs are used
in further processing to compute a new point cloud within the application of the
stereo model deformation theory or non-rigid transformation of the point cloud.
Such a unique approach (instead of pixel coordinates) ensures that the accuracy of
the original points is not lost. Optional raster generation is also possible if this is
required for the lidargram-matching process within the second basic research work-
flow (described in the following section).

Synthetic-image generation from point clouds faces two problems: the problem
of empty pixels, and the problem of occluded areas.

Empty Pixels

The first problem is empty pixels where there is no projected LiDAR point
cloud. Initially, there are many empty pixels between the pixels of any projected
LiDAR point coordinates (Fig. 2a). This can be solved in two ways and can be suc-
cessful until the blurring of the image degrades its quality: enlarging the virtual
sensor pixel (Fig. 2b), or increasing the number of lidargram pixels that are colored
around the central pixel (Fig. 2c).

a) b)

Bs

Fig. 2. Simulated results of point-cloud projection on lidargram:
a) simple projection with empty pixels; b) magnified virtual-camera pixel size;
¢) pixel-range option with parameter =1 px

In fact, both ways can give the same effect; however, we prefer the second
way — without changing any parameters of the virtual sensor (like pixel size) for the
sake of future research (among others, the integration of photo and LiDAR data by
co-matching two sets of images with the same IOPs). To solve this problem, we use
the so-called “pixel-range” parameter (pxr — abbreviation in the PyLiGram GUI),
which defines the number of pixels around which to color. If this parameter is equal
to 0 (Fig. 2a), only the central pixel is colored; if it is equal to 1, an additional pixel
is colored in all directions. The total number of colored pixels is nine — one cen-
tral pixel, and the eight pixels around it (Fig. 2c). For pxr = 2, the total number of
colored pixels is 25 (1 + 8 + 16).
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Another option is implemented during the process: Gaussian blurring. The blur-
ring during lidargram generation is set by the so-called “pixel-sigma” parameter
(pxSig — shortcut in the PyLiGram GUI). This represents the standard deviation of the
color in the pixels starting from the central pixel. For example, with settings of pxr =2
and pxSig =2, the central pixel takes on the color of the original point; the color of the
surrounding pixels decreases according to the Gaussian function (with a standard
deviation of 2 px). Pixel-sigma parameter only works within the number of pixels
that are defined by the pixel-range parameter. For a better understanding, Figure 3
shows a comparison of three sample images of a single red LiDAR point projection.

a) b) <)

Fig. 3. Simulated results of projection of single red point:
a) simple projection with pxr =0 and pxSig = 0; b) pxr =2 and pxSig =0;
¢) pxr =2 and pxSig =2

Occlusions

The second problem that needs to be solved when generating lidargrams is oc-
clusion. Some areas that are scanned by LiDAR cannot be projected onto a lidargram,
as the point cloud is continuously acquired and lidargrams are only acquired from
certain points in space. In addition, the original trajectory of the LiDAR is unknown
and may not be exactly the same as the virtual flight line that is defined by VFP. To
solve this problem, two parameters were implemented (Fig. 4).

The first is rdTol — a height tolerance for points that are projected into a pixel;
all are compared to the highest point and are discarded if they are lower than rdTol.
Another parameter — rr'Tol — defines the search radius if there are higher points in
the neighborhood as defined by rrTol.

The result of using these parameters is shown in Figure 5; it shows the roof
of a building. Looking from this direction, the wall of the building and part of
the road are occluded. The first example shows a lidargram that is generated
with pxr =1 and rdTol and rrTol = 1 (Fig. 5a). There are many empty pixels, but
the occluded areas (such as the wall of the building and the road) are not projected
onto the lidargram image. The second sample of the same pixel range was gener-
ated without filtering, and there are pixels on the roof (inside the red ellipse) that
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represent the original LIDAR points of the occluded building wall and road (Fig. 5b).
The same result can be seen in the next two samples (with and without filtering and
generated with pxr =2). The third sample is correctly generated and shows that the
filter works correctly (Fig. 5c). Like the second, the fourth sample contains pixels in
the roof area of the occluded parts (Fig. 5d).

lidargram

Fig. 4. Point-cloud filtering during projection of occluded areas —
green points are taken into account to generate lidargram; red ones are not

a) . b) <) _ d)

R
MR
:

"

S

Fig. 5. Four samples of lidargram presenting roof and occlusion:
a) pxr =1 (filter on); b) pxr =1 (filter off); c) pxr =2 (filter on);
d) pxr =2 (filter off)
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Despite the use of these parameters, the quality of the lidargrams is limited;
more-sophisticated methods such as post-processing Gaussian blurring and color
interpolation will be explored in the near future.

3.3. Model-Deformation Functionalities

The first LIDAR data-enhancement method that is implemented in PyLiGram
was described in [78]. The deformation theory of the stereoscopic model was ap-
plied to the deformation of a non-rigid LiDAR strip; this deformation is defined by
the vertical discrepancies of four corners of the strip. The values of the discrepan-
cies should be defined by ground-control points (GCP) or patches. The flexibility
of the method allows each of the corners to be moved up or down by a different
vector (Fig. 6).

dka

\dom

dz1 * T dz12

dz12

dzP3

dzP2

dzpP1 [ {
dzPa

Fig. 6. Strip-height deformation by changing lidargrams’ EOPs
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The workflow starts by opening the point cloud to be processed; the virtual
camera parameters must be inserted into the virtual flight parameters table, and
the text file containing the GCPs must be opened. Parameters r (range) and ¢ (tol-
erance) define the radius and height tolerance, respectively, of the vertical cylinder
that is defined for each of the GCPs. The symmetry axis of the cylinder is verti-
cal and passes through the GCP. The heights of the points of the processed cloud
within the cylinder are averaged, and the height difference is calculated with respect
to the GCP. Once the GCPs are selected, the EOPs of the lidargrams are calculated.
The X and Y coordinates of the first projection center are in the middle of the first
two GCPs, while the X and Y coordinates of the second projection center are in the
middle of the next two GCPs. Both the IOPs and EOPs are automatically saved in
a JSON file with the same name as the point cloud. Based on these four differences,
the algorithm calculates four single steps according to the possible changes of the
relative orientation parameters (ROPs) of the virtual lidargram model: the height
difference of both projection centers dZ ,, the height difference of the first projection
center (dB,), the difference of the omega rotation of the first lidargram (dom), and
the difference of the kappa rotation of the first lidargram (dka) according to Equa-
tion (1):

—B) dB, XY dom - Y g (1)
B B B

(X

Az =dz,, -

When the new ROPs are applied, the new point cloud is forward-intersected.

The method gives perfectly correct effects — provided that the GCPs are in a reg-
ular rectangle; if not, the curvature of the edge of the processed point cloud (the edge
that ends the strip that is perpendicular to the flight line) may appear. When the next
part of the strip is processed, the curvature will appear on the common edge in the
opposite direction; this is one reason for the discrepancy. The next disadvantage is
that the point cloud can only be corrected vertically. We have not yet implemented
another possible option to change the X and Y of the horizontal shift of the point
cloud. Changing the azimuth of the baseline (connecting the two centers of the pro-
jection of the lidargrams) would allow for the global kappa rotation of the point
cloud. This was not implemented because it was decided to develop the second
much more flexible and universal method: spatial point-cloud enhancement based
on GCPs, and lidargram-matching.

The method was tested on synthetic, semisynthetic, and real data, as was its
implementation in PyLiGram [84]. The GCPs were defined as selected points of the
original cloud, and their heights was changed to simulate vertical discrepancies
(they were not measured in the line of sight — these can be referred to as virtu-
al GCPs [VGCPs]). Such an approach is useful for testing the method and its imple-
mentation, as the coordinates of the VGCPs are virtually marked and can be meas-
ured without error. It is a known problem that the nature of LIDAR data makes it
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difficult to unambiguously mark, identify, and measure VGCPs — especially on the
horizontal plane. This problem is avoided with VGCPs, which do not need to be
measured on the point cloud. This is only useful for method and software testing.

3.4. Matching of Lidargrams

Another application of lidargrammetry to LIDAR data processing is a one-step
enhancement method that is based on matching lidargrams and their block adjust-
ments using GCPs for flexible point-cloud transformation. This method is the sub-
ject of a separate paper (which is currently under review).

The method uses external matching and adjustments by Agisoft Metashape.
The workflow starts from PyLiGram using the externally adjusted EO calculation
and then processes the point-cloud intersection after returning to PyLiGram (Fig. 7).

(a) Input (b) IOPs (d) Ground (i) Optional point
LiDAR data EOPs control cloud transformation

(c) Generation of (f) Matching
lidargramms Aerial triangulation

(e) Identification of (g) Corrected
point<>pixel (ULPIs) EOPs

(h) Multi-intersection
Output LIiDAR data

Fig. 7. Workflow of lidargram-matching for flexible 3D point-cloud transformation
and registration

The same method of VGCPs was used to test this PyLiGram functionality. The
text file that contains the VGCPs is selected after importing the point clouds;
the XML file of their virtual measurements on the lidargram is generated at the same
time when the lidargram is generated. The XML contains the data in the format that
is required by Agisoft. The rasters must be saved to a disc for matching and adjust-
ments in the external software. The adjustments use a different set of coordinates to
the GCPs, as they are used as block-deformation information.
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The matching and strip adjustment use the same camera as defined during the
generation of the lidargram. The a priori accuracies of the measurement errors, input-
data errors, and approximated EOPs are adapted to the need of the flexibility of the
block: the low accuracy of the measurements of the tie points is defined. The accura-
cies of the coordinates of the GCPs and the measurement errors of the GCPs are rel-
atively high in order to deform the block according to the locations of the GCPs and
to allow the block of lidargrams to be deformed during the block adjustment. The re-
sulting EOPs are imported into PyLiGram after the adjustments, and all of the points
of the deformed point cloud are recalculated by least-squares adjustment as a multi-
ple intersection using these new EOPs and according to the ULPIs.

Several specific functionalities have been implemented in PyLiGram to make
it able to flexibly deform a point cloud, but the idea is based on the use of ULPIs and
lidargram-matching.

4. Implementation Results and Discussion

The results of all three options for solving the black-pixel problem were test-
ed by matching lidargrams. Four procedures were repeated for three test areas:
Krakow’s city center, Loosdorf (Austria), and Bierun (a village in Poland). The first
procedure was a standard COLMAP software reconstruction [85], while the next
three were combinations of 3DOM matching pipelines based on deep learning [86]
and COLMAP reconstruction, adjustment, and accuracy reporting. The pipelines
were as follows: a combination of the Superpoint feature search method [87] and Su-
perglue matching [88] (Superpoint+Superglue); a Lightglue feature search [89] and
Superglue matching; and the DISK method [90]. This was repeated for four levels
of the matching quality of the process (lowest/low/medium/high). In general, the
quality was defined by the ratio of the image pixel that was used for the matching to
the original pixel. For the high quality, the ratio of the original pixel to the matching
pixel was 1:1; this was omitted because it was too time-consuming and resource-
intensive in our preliminary tests. The low-quality level was chosen for our com-
parison, as it was common to all of the test data. Such a level reduced the original
resolution by a factor of 4 for the processing.

The testing of the several variants of pixel-range and pixel-sigma parameters
for Colmap and the Superpoint+Superglue, Superpoint+Lightglue, and Disk+Light-
glue pipelines was controlled by two parameters: the number of matches, and the
reprojection error. In order to summarize the results, the sum of the matches and
the mean reprojection error values were calculated for each pipeline across each
of the pixel-range and pixel-sigma parameters.

Three test fields were selected to test the lidargram-generation process:
Krakow’s city center, Loosdorf, and Bierun. Table 1 shows the basic technical data
from these data fields.
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Table 1. Test-field data

Specification Krakow’s city center Loosdorf Bierun
Average point distance (APD) [cm] 15 3 10
Source blocks of data strip strip
ALS/ULS ALS ALS ULS

4.1. Krakow Test Field

The LiDAR data for Krakow’s city center came from the ISOK project (Infor-
matyczny System Ochrony Kraju [Computerized National Protection System]). The
data was used in blocks rather than strips; this approach made it possible to access
dense LiDAR data from a highly urbanized area. The intensity point cloud had an
average point distance (APD) of about 15 cm and was acquired with a red-light
scanner. Stereo images of the lidargrams were generated using virtual large-format
aerial camera EOPs; these were predefined to be equivalent to real photogrammetric
data. The ground-sampling distance of the lidargrams was about 10 cm, and several
configurations of the pixel-range and pixel-sigma parameters were used.

The number of matches and the reprojection error by relative orientation are
shown in Tables 2 and 3, respectively. Twenty variants of the pixel-range and pixel-
sigma parameter settings were calculated, along with four matching methods and
four quality levels.

Table 2. Numbers of matches for low-quality variants of Krakow’s city center test data
(maximum values for pipeline/pixel range in bold)

Test Pixel I.’ixel Number of matches
LR Colmap 3DOM 3DOM 3DOM
Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue

1 1 0 3854 1051 2338 2232
2 1 1 3307 1057 2368 2394
3 2 0 3250 1083 2979 2977
4 2 1 2845 953 2531 2460
5 2 2 3126 1076 2889 2870
6 3 0 3430 1137 3894 3910
7 3 1 397 971 2459 2458
8 3 2 2865 1111 3121 3118
9 3 3 3186 1149 3375 3372

10 4 0 3649 1217 4162 4164

11 4 1 56 1031 2239 2266

12 4 2 3082 1105 3053 3044
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Table 2. cont.

13 4 3 3352 1203 3350 3336
14 4 4 3274 1210 3565 3560
15 5 0 3737 1281 4012 4001
16 5 1 25 978 2059 2133
17 5 2 3796 1132 2958 2994
18 5 3 3006 1198 3278 3289
19 5 4 3360 1217 3445 3458
20 5 5 454 1262 3647 3644
Sum 54,051 22,422 61,722 61,680
Std. dev. of best (bold) 243 93 776 767

After analyzing the results of Table 2, we can make the following assumptions:

1.

Colmap matched the lidargrams with the highest numbers of points; howev-
er, there were some exceptions.

The pipeline Disk+Lightglue gave the lowest number of matches, while the
Superpoint+Lightglue and Superpoint+Superglue pipelines provided simi-
lar results.

. The best results could be found for pxSig = 0.4; as an exception, the lidar-

grams with smaller pixel ranges than the photo pixel sizes matched better
when pixel sigma was on.

The highest number of matches could be found for the Superpoint+Light-
glue variant.

The experiment of the Gaussian blurring of the pixels within the pixel range
gave negative results.

Comparing the results of Test IDs 1 and 2, there were more matching points
after enlarging the pixel areas of the lidargrams.

It is also worth mentioning that the maximum total sum of matches for each
method could be found in the Superpoint+Lightglue method; the most-similar
results through all of the methods could be found for the Disk pipeline.

The results of Colmap were the largest.

If we consider only the maximum results for each pipeline and pixel size case
(bold), we can observe that the mean scatter of the results could be found for
the Colmap pipeline, the smallest scatter — for the Disk pipeline, and the
largest — for both Superpoint methods.

Figure 8 shows the distribution and the number of matches. As mentioned
above, the highest number of matches could be found in the Colmap results (Fig. 8a),
the lowest number — in the Disk+Lightglue results (Fig. 8d); the Superpoint meth-
ods were the best of the deep-learning methods (Fig. 8b, c). The distributions of the
matches were correct and relatively uniform for all four methods.
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Fig. 8. Distribution of matches of four compared feature-matching algorithms:
a) SIFT; b) Superpoint+Superglue; c) Superpoint+Lightglue; d) Disk+Lightglue
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Table 3. Reprojection errors for low-quality variants of Krakow’s city center test data
(minimum values for pipeline/pixel range in bold)

Test Pixel I.’ixel Reprojection errors [px]

D | range | sigma Colma 3DOM 3DOM 3DOM
[px] [px] P Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue

1 1 0 1.071 1.275 1.645 1.606
2 1 1 1.022 1.302 1.631 1.633
3 2 0 1.084 1.362 1.578 1.586
4 2 1 0.999 1.341 1.629 1.624
5 2 2 1.101 1.345 1.587 1.569
6 3 0 1.028 1.275 1.556 1.559
7 3 1 0.966 1.375 1.704 1.691
8 3 2 1.146 1.331 1.607 1.595
9 3 3 1.025 1.298 1.558 1.570
10 4 0 1.016 1.291 1.553 1.559
11 4 1 0.706 1.377 1.757 1.733
12 4 2 1.104 1.295 1.621 1.607
13 4 3 1.042 1.290 1.565 1.569
14 4 4 1.087 1.287 1.547 1.546
15 5 0 0.962 1.312 1.482 1.482
16 5 1 0.391 1.379 1.629 1.751
17 5 2 0.928 1.294 1.613 1.623
18 5 3 1.057 1.287 1.546 1.548
19 5 4 1.018 1.290 1.538 1.548
20 5 5 1.335 1.295 1.539 1.540

Mean 0.987 1.316 1.597 1.600

(S;ii;)e"' of selection | 5 579 0.027 0.054 0.047

After analyzing the projection errors in Table 3, we can make the following as-
sumptions:

1. The Colmap pipeline provided the best results — even 0.391 px for a five-
pixel area and one pixel-sigma case.

2. The Disk-reprojection errors were higher than those of Colmap but lower
than those of the two Superpoint pipelines.

3. It was significant that the blurring by the pixel-sigma parameter gave better
results for the Disk pipeline but not for the other methods.

4. The dispersion of all of the results was highest for Colmap — even when only
the best results were taken into account.

5. The results of the Superpoint methods were the worst.



22 A. Rzonca, M. Twardowski

Comparing the numbers of matches and the numbers of reprojection errors,
the Colmap pipeline generally provided the best results in both cases; the general
scatter and the scatter of the best results were medium for both of the Superpoint
methods. The scatter of the reprojection error of Disk was generally the smallest,
while the largest could be found in the Colmap pipelines. This meant that Colmap
was the most sensitive to changes in the pixel range and pixel sigma. All of the deep-
learning methods were ten-times-less sensitive.

4.2. Loosdorf Test Field

The Loosdorf data was acquired using a Riegl VQ-1560i imaging system. The
IR band scanner data was used to generate the lidargram, the virtual camera IOPs
were equal to the PhaseOne iMX-100 camera IOPs, and the EOPs were applied
from real adjusted photogrammetric data. The GSD of the photos was approximate-
ly 7.4 cm, and the APD of the LiDAR points was 3 cm. The results of the four pipe-
lines that were analogous to Krakow’s city center data set are presented in Table 4
(the number of matches) and Table 5 (the reprojection error).

Table 4. Numbers of matches for low-quality variants of Loosdorf test data
(maximum values for pipeline/pixel range in bold)

Pixel | Pixel Number of matches
Test range | sigma
P [px] | [px] | Colmap | ... SDOM SDOM 3DOM
Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue

1 1 0 2259 1005 1444 1442

2 1 1 1822 960 1385 1378

3 2 0 2788 928 2986 3027

4 2 1 2017 754 1764 1757

5 2 2 2289 897 2680 2728

6 3 0 3029 900 2479 2506

7 3 1 1872 810 1939 1917

8 3 2 2531 878 2745 2793

9 3 3 2463 882 2771 2801

10 4 0 3227 942 2321 2331

11 4 1 1833 873 1807 1791

12 4 2 2129 914 2320 2314

13 4 3 2403 920 2634 2660

14 4 4 2600 934 2663 2692
Sum 33,262 4678 31,938 32,137

Std. dev. of best (bold) | 418.3 454 690.0 659.6
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To resume the results from Loosdorf in the set of games, we observed the fol-

lowing;:

1. Colmap found the highest number of points — 3029 was the maximum num-
ber for pxr =3 and pxSig = 0.2; Disk reprojection showed the worst effective-
ness, and both Superpoint methods gave similar results not (significantly
worse than the Colmap method).

2. Applying blur by using the pixel-sigma parameter was not helpful; in some
cases, however, it gave slightly better results.

3. The scatter of the number of matches was the highest for the two Superpoint
methods and the lowest for the Disk. The scatter of the reproduction errors
of the lowest errors was the lowest for the Superpoint+Lightglue method
and the highest for Colmap.

4. This meant that the Colmap results were much more dependent on the pixel-
range and pixel-sigma parameters than the deep-matching methods.

Table 5. Reprojection errors for low-quality variants of Loosdorf test data
(minimum values for pipeline/pixel range in bold)

Pixel | Pixel Reprojection error [px]
TIeSt range | sigma 3DOM 3DOM 3DOM
[px] [px] | Colmap Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue

1 1 0 0.989 1.294 1.520 1.528
2 1 1 0.942 1.336 1.468 1.455
3 2 0 0.788 1.225 1.299 1.298
4 2 1 0.981 1.276 1.458 1.461
5 2 2 0.923 1.198 1.361 1.376
6 3 0 0.749 1.169 1.277 1.284
7 3 1 0.930 1.360 1.433 1.446
8 3 2 0.868 1.120 1.314 1.333
9 3 3 0.857 1.121 1.317 1.324
10 4 0 0.735 1.191 1.250 1.259
11 4 1 0.914 1.318 1.425 1.436
12 4 2 0.864 1.193 1.349 1.343
13 4 3 0.855 1.207 1.311 1.325
14 4 4 0.813 1.180 1.291 1.301

Mean 0.872 1.228 1.362 1.369

Std. dev. of selection | 14 0.055 0.094 0.020

(bold)
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The reprojection-error analysis can be concluded as follows:

1. The highest accuracy was obtained with Colmap; the results of the other
methods were slightly worse.

2. The best results of the deep-learning methods were obtained by Disk.

3. Using the pixel-sigma parameters provided better results in some cases, but
this was not a general rule.

4. Colmap had the largest scatter of results, while the results from Superpoint-
Superlight were the most similar.

Comparing the numbers of matches and the numbers of reprojection errors, the
numbers of points generally indicated that the Superpoint methods were the most
effective; however, the best accuracy of matching was the Colmap method. The scat-
ter of the results was higher for all of the pixel-sigma variants. When selecting the
best, the scatter of the results was generally lower for the deep-matching methods.

4.3. Bierun Test Field

The third data set was a UAV data set from a DJI Phantom Pro RTK drone
with a Riegl VUX-1IUAV scanner. LIDAR programs were generated using 10Ps
from the Phantom Pro’s 88 mm camera. The point cloud had about 10 cm APD,
while the GSD of the photos had 1.3 cm. The results of the matching according to the
LiDAR program-generation parameters are shown in Tables 6 and 7.

Table 6. Numbers of matches for low-quality variants of Bierun test data
(maximum values for pipeline/pixel range in bold)

Test Pixel I.’ixel Number of matches
D | range | sigma 3DOM 3DOM 3DOM
(px] [px] | Colmap Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue
1 1 0 2792 1834 866 904
2 1 1 2410 1839 742 742
3 2 0 1991 2018 896 894
4 2 1 2179 1797 497 518
5 2 2 3417 1989 872 868
6 3 0 2989 1988 790 798
7 3 1 4410 1761 395 396
8 3 2 1565 1968 754 745
9 3 3 2244 1975 887 895
10 4 0 2826 2031 631 525
11 4 1 5682 1690 305 304
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Table 6. cont.

12 4 2 1667 1959 567 548

13 4 3 606 2053 711 706

14 4 4 1752 2033 752 759
Sum 36,530 26,935 9665 9602
Std. dev. of best (bold) | 1271.8 116.2 187.6 195.3

Bierun’s results can be summarized as follows:

1. Colmap found the highest number of points — 5682 was the maximum for
pxr = 4 and pxSig = 1.2; the Superpoint+Superglue pipeline had the worst
efficiency, both of the Superpoint methods gave similarly low results, and
the Disk pipeline results were in the middle.

2. Applying image blur using the pixel-sigma parameter was not helpful; in
some cases, however, it gave slightly better results.

3. The scatter of the number of matches was highest for the Colmap results,
Disk had the lowest number of matches, and both Superpoint methods gave
average results.

4. This meant that the Colmap results depended much more on the pixel-range
and pixel-sigma parameters than the deep-matching methods.

Table 7. Reprojection errors for low-quality variants of Bierun test data
(minimum values for pipeline/pixel range in bold)

Pixel | Pixel Reprojection error [px]
ghtglue | Superpoint+Lightglue | Superpoint+Superglue
1 1 0 0.415 0.855 1.438 1.465
2 1 1 0.369 0.892 1.433 1.443
3 2 0 0.735 0.851 1.485 1.471
4 2 1 0.387 0.913 1.462 1.598
5 2 2 0.472 0.845 1.482 1.474
6 3 0 0.653 0.877 1.375 1.359
7 3 1 0.265 0.975 1.530 1.592
8 3 2 0.739 0.876 1.473 1.457
9 3 3 0.691 0.864 1.291 1.310
10 4 0 0.596 0.966 1.511 1.533
1 4 1 0.248 1.015 1.682 1.666
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Table 7. cont.

Test Pixel l.’ix el Reprojection error [px]
D | fange | sigma 3DOM 3DOM 3DOM
[px] [px] | Colmap Disk+Lightglue | Superpoint+Lightglue | Superpoint+Superglue
12 4 2 0.581 0.940 1.476 1.457
13 4 3 0.831 0.932 1.429 1.422
14 4 4 0.687 0.957 1.390 1.379
Mean 0.548 0.911 1.461 1.473
Std. dev. of selection | 154 0.054 0.088 0.097
(bold)

The results of the reprojection-error analysis were as follows:

1. The highest accuracy was obtained with Colmap; the results of the other
methods were worse (but acceptable).

2. Disk gave the best results for the deep-learning methods.

3. Using pixel-sigma parameters gave better results in most cases, but this was
not a general rule.

4. Colmap had the largest scatter of results, Superpoint-Superlight had the
most similar results, and the Disk pipeline had the most-coherent results.

Analyzing the results in terms of the numbers of matches and reprojection er-
rors, we could generally consider the Colmap method to be better in terms of the
number of matches that were found and the final accuracy. It should be noted that
the scatter of the number of matches was relatively high; this was due to the different
settings of the pixel range and pixel sigma. The scatter of the reprojection error was
also high.

4.4. Discussion

The results that were presented for all of the test data proved that the matching
of the lidargrams from different original lidars was possible and effective. The use of
four pipelines (one standard pipeline from Colmap, and three deep-learning pipe-
lines from 3DOM) allowed for a broader analysis of the problem and ensured that the
lidargram-generation procedure of PyLiGram provided synthetic images that could
be matched. Two additional parameters were implemented, and the number of com-
binations of these parameters determined the number of cases that were computed.

The number of matched points was the first parameter that was used to evalu-
ate the used pipelines. For the Krakow and Loosdorf data, where the GSD/average
point ratio was similar (approximately 3:2 and 2:1, respectively), the number was
high, with Colmap and both Superpoint pipelines giving the best results. In the case
of Bierun, where the ratio was the opposite (about 1:6), Colmap gave the best results.
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The spreads of the results were highest with the Colmap pipeline for the Krakow
and Bierun data and with the Superpoint pipeline for Loosdorf. There was no obvi-
ous trend.

Similarly, the reprojection errors were the lowest for Colmap for Krakow and
Loosdorf (as well as for Bierun). The worst results in terms of accuracy were obtained
by the two Superpoint pipelines; this can be explained by the facts that the models
of the deep-learning methods were trained on real photo data and the matching
process was much more flexible (taking imperfect matches into account). Colmap’s
reprojection errors were less coherent than those of the other pipelines.

The next aspect to discuss is whether the pixel-range option supported the
matching process. When analyzing all of the results, there was now a clear corre-
lation between the pixel range and the number of matches. In the Krakow test, in-
creasing the pixel range did not change anything in the Colmap pipeline; in the
deep-learning pipelines, it slightly supported the process. The original point cloud
was very dense and there were not many empty pixels on the lidargram that were
generated with a pixel range that was equal to 0. In the Loosdorf data, it helped to
start with a pixel range that was equal to 2 in order to fill the empty pixels. In Bierun,
the pixel size of the virtual camera was chosen to fill the gaps of the very sparse
point cloud.

An additional experimental parameter was the pixel sigma; the experiment did
not give a clear positive result. Most of the obtained numbers of matches and repro-
jection errors were for a pixel sigma that was equal to 0; there were exceptions, but
it was impossible to state a principle.

The last point of discussion is which pipeline provided the most coherent re-
sults? This analysis was based on the best results for each group of calculations with-
in the same pipeline and within the same pixel range. The best results were select-
ed, and these were analyzed. The most coherent results in terms of the numbers of
matches and reprojection errors were obtained by the Disk+Lightglue pipeline in
nearly all of the cases.

5. Conclusions

This paper presents the development and functionalities of the PyLiGram
research tool. PyLiGram has been developed for more effective and innovative
LiDAR data processing; it is based on photogrammetric algorithms that are applied
to LIDAR data through synthetic-image generation and processing. An additional
important solution that was applied within PyLiGram’s processing was the unique
LiDAR point identifier (ULPI) assignment of original LiDAR points and their pro-
jections onto lidargrams.

Three processes are described and discussed: lidargram generation, a model-
deformation method for flexible LiDAR strip transformation, and adjustments of
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blocks of LiDAR data by external matching as well as adjustments of lidargrams for
multi-intersection.

Several innovative solutions were applied for the correct generations of lidar-
grams. The first solution was to enable the generation of a synthetic image that
looked like a real camera image; this was important for manual stereoscopic obser-
vation, which was the first goal of lidargrammetry. Several tests and experiments
were carried out to improve the quality of the generated images. Two main prob-
lems were solved: how to fill empty pixels, and how to avoid projecting points into
the occluded areas.

The algorithm for filling the empty pixels was tested by the quality of the match,
which was measured by the number of matches that were found and the repro-
jection error. The first parameter was the pixel range; it improved the results until
the APD was similar to the GSD of the lidargram. However, it was generally more
useful for improving direct observations and image perceptions than for matching.
Four pipelines were tested, and most of the results indicated that Colmap was the
most effective method. The use of the pixel-range parameter was not confirmed to
be critical for success in matching.

Another parameter was used: pixel sigma for Gaussian blurring. The results
of the number of matches and the reprojection error were not improved by this pa-
rameter.

The overall conclusion was that the applications of these parameters (pixel
range and pixel sigma) had little influence on the matching results. Despite these
results, the lidargram-generation algorithm facilitated the matching of these images.

The second research functionality of PyLiGram is the application of model-
deformation theory for the flexible height transformation of LiDAR strips. This
innovative photogrammetric approach is supported by separately described re-
search [78]. The method has some limitations; however, it general allows for the
creation of a LiDAR strip that is based on ground-control points or patches of ap-
propriate distributions.

The third research application of PyLiGram is the 3D transformation of LiDAR
blocks based on external matching and adjustment. The results were promising, and
the tool worked well. This research is described in a separate paper (which is still
under review).

The general conclusion is that PyLiGram is an innovative tool that is based on
photogrammetry and ULPI - specific ideas for effective and innovative LiDAR data
processing.

6. Future Research

Matching lidargrams and images is the first future research area that was im-
plemented in PyLiGram. The first tests, which were based on external deep-learning
matching and adaptation, showed promising results. There are two basic ways to
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improve the quality of the matching process: the first is to develop a lidargram-
generation algorithm and use already-trained deep-learning pipelines; the second
is to train a new deep-learning model that is dedicated to LiDAR and image-data
matching. A new functionality should be developed within PyLiGram: the auto-
matic generation and analysis of deep-learning samples. The deep-learning-model-
building tool for LIDAR and RGB data matching would be trained by using sam-
ples that are automatically selected from LiDAR blocks and orthophotos — two data
sets that are oriented in the same coordinate system. Future research will include
testing the number of samples that are required and the size of the optimal grid step.
The next stage of the research and PyLiGram development will include trajectory
transformation (or virtual trajectory generation). The process may be based on the
photogrammetric resectioning of virtual dense lidargram strips.

It is also planned to develop PyLiGram so that it can be controlled by scripting
for more-effective research applications.
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