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Abstract:	 When an earthquake occurs, promptly identifying the presence or absence 
of damage is crucial. This study developed a real-time building-damage-
extraction technique using ground-based imagery and evaluated its effec-
tiveness. The technique applies the redness index (RI) (which was previously 
used in remote-sensing corrections for vegetation in arid regions) to identify 
“building damage” in those cases where buildings are partially or completely 
destroyed by earthquakes or tsunamis.

	 To capture near-field and distant perspectives in the images, each image was 
divided into four quadrants (upper-left, upper-right, lower-left, and lower-
right). The lower-left and lower-right quadrants were analyzed to assess the 
conditions on either side of a road in the near field using image recognition. 
Since the images contain latitudinal and longitudinal information, mapping 
the damage along the road can be automated by recording the route. Finally, 
a comparative analysis with other indices was conducted in order to evaluate 
RI’s superiority in damage mapping. The EMS-98 damage scale was used for 
damage assessment, classifying D5 (RI ≥ 0.08) as “building-collapse damage” 
and D0–D4 as “no building-collapse damage.” The average damage values 
for D5-classified buildings were significantly higher than others, thus demon-
strating that RI provides practical and reliable results. Additionally, the study 
discussed comparisons with other indices and real-time evaluation methods. 
The authors sincerely hope this research contributes to life-saving efforts and 
deliveries of relief supplies in the aftermaths of earthquakes, ultimately saving 
many lives.
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1.	 Introduction
1.1.	 Application of Remote-Sensing Indices  

for Extracting Building Damage and Current Challenges
Remote-sensing technologies such as satellite imagery and UAVs (unmanned 

aerial vehicles) are widely used to assess damage conditions following earthquakes 
and tsunamis; however, these methods often face challenges in accurately evalu-
ating situations due to constraints like weather conditions, image resolutions, and 
coverage areas. Furthermore, generating 3D images or conducting anomaly detec-
tion requires advanced software, which can be inefficient in terms of time and cost 
at disaster sites [1–5].

One potential solution to these challenges is a method of capturing video foot-
age while moving through disaster-affected areas using vehicles to rapidly identify 
damaged areas  [6]. This approach emphasizes the importance of obtaining high-
resolution and accurate images in short amounts of time using dashcams, digital 
cameras, or smartphones and efficiently sharing this information.

During the 2024 Noto Peninsula earthquake, for instance, the National Re-
search Institute for Earth Science and Disaster Resilience (NIED) published images 
of the disaster-affected areas that were captured with a 360-degree camera that was 
mounted on a vehicle [7]. Moreover, advancements in platforms like Google and so-
cial media (e.g., X) have contributed to the big-data phenomenon in disaster-related 
imagery and videos. Consequently, it is a societal demand to eliminate irrelevant 
information and share accurate data swiftly [8–11].

Additionally, human vision perceives colors based on the reflectance charac-
teristics of red, blue, and green wavelengths, and remote-sensing indices in the vis-
ible light spectrum have been studied using these properties. For example, the 
Visible Atmospherically Resistant Index (VARI), a vegetation index that leverages 
the characteristic that green reflectance is high while red reflectance is low [12]. Sim-
ilarly, the Visible Water Resident Index (VWRI), a vegetation index for representing 
chlorophyll concentrations in water has been developed [13, 14].

Among these, RI, which is used for correcting vegetation indices such 
as NDVI [15–17], has drawn attention as a method for adjusting vegetation assess-
ments in arid regions. This study explores whether RI can be applied as a suitable 
index for assessing earthquake-damage conditions.

However, several challenges arise when applying RI directly to images that are 
obtained from disaster sites. The first issue is the inability to accurately capture po-
sitional information due to the lack of depth perception in the images. The second 
issue is that RI is highly responsive to artificial red objects (such as red roofs or paint 
in affected areas). The third issue lies in the difficulty of establishing appropriate 
evaluation criteria. This study addresses these challenges in an effort to develop 
a viable solution.

Details regarding the characteristics of spectral reflectance are shown in Figure 1.
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Vegetation equation has the following form:
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G R B

−
=

+ −
	 (1)

Formula for calculating chlorophyll-a concentration in water is as follows:
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− −
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+ +

	 (2)

RI is expressed by the formula:

	 R GRI
R G
−

=
+

	 (3)

1.2.	 Differences from Previous Studies

To date, research that has utilized satellite and aerial imagery has been conducted 
in efforts to automate the detections of changes before and after disasters. For instance, 
Tomowski et al. applied a method that was based on principal-component analysis 
and histogram optimization in order to visualize any changes in the images of the Hai-
tian earthquake region before and after the disaster in 2024 [19]. Similarly, Yamaza-
ki et al. identified regions that were affected by the Indian Ocean tsunami by compar-
ing pre- and post-disaster images [20]. Furthermore, Ma et al. developed a series of 
novel methods, including the optimizable variational model (OptVM) and the scale-
invariant feature transform constrained optical flow method (SIFT-OFM), to create 
products such as cloud-free base maps and disaster-area-change-detection maps [21].

Fig. 1. Wavelength rates by physical properties (water, vegetation, soil)
Source: [18]
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A common feature of these studies is their reliance on comparing two images 
that have been captured before and after a disaster to detect any changes. In these 
methods, areas of missing data are influenced by a combination of spatial conditions 
(e.g., weather or aerial coverage) and temporal conditions (e.g., the timing of an image 
capture) [22, 23].

In contrast, the study that is proposed in this paper demonstrates that it is possible 
to estimate the extent of damage through image recognition – even when only post-
disaster images are available. By using RGB data and avoiding neural networks [24] 
or machine learning, the resulting computational loads are significantly reduced. Ad-
ditionally, this system is compatible with dashcam images, thus allowing damage-
estimation results to be obtained promptly with field-survey images alone. This ca-
pability to detect affected areas in real time sets it apart from traditional approaches.

2.	 Methods
2.1.	 Flow

The overall flow is shown in Figure 2. Briefly summarized, this paper follows 
the following three steps.

Fig. 2. Overall flow

2.2.	 Application of Redness Index (RI)

The redness index is calculated based on the differences in the reflectance inten-
sity. Since soil and wood exhibit higher red reflectance and lower green reflectance, 
this study utilized RI as an indicator for evaluating building collapses. Assuming 
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that RI (which was originally developed as a vegetation-correction index for arid 
regions) can detect the outflow of wood and soil that is caused by building collapses 
or other disasters based on their spectral reflectance characteristics, this study eval-
uates its accuracy and utility.

RI values are obtained across the image. The mean and standard deviations of 
the RI values are then calculated for all of the pixels, and these values are used to 
classify each area as “damaged” or “not damaged.” To validate the calibration pro-
cess, this study employed two methods for determining whether an area is “dam-
aged” or “not damaged”:

1)	 calculation based on mean values,
2)	 calculation based on proportion of pixels that meet specific RI conditions.

Calculation Based on Mean Values
The average RI value for each image is calculated; if this average exceeds a spec-

ified threshold, the area is classified as “damaged.” This method aligns with the 
existing RI-calculation techniques.

Calculation Based on Proportion of Pixels  
That Meet Specific RI Conditions
To account for local sunlight and weather conditions, RI was calibrated to match 

the local characteristics of wood and soil. The calibrated values are referred to as 
RIcal, and the pixels in the target image are classified as “damaged pixels” if their RI 
values fall within a range that is defined by the mean (μ) and standard (σ) deviations 
of RIcal, as shown in Equations (4):

	 μ – ασ ≤ RI ≤ μ + ασ	 (4)

An example of the image that was used for calibration is shown in Figure 3; this 
was selected at the discretion of the researchers.

Fig. 3. Example of debris used for calibration
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2.3.	 Image-Segmentation Method for RI Calculation

As shown in Figure 4 (in images that were captured from a road), it is intui-
tively understood that the upper half of the image (namely, Regions  [1] and  [2]) 
depicts distant areas or the sky; therefore, it is reasonable to exclude the upper half 
of an image when analyzing nearby surroundings. The image is then divided into 
the lower-left and lower-right halves (referred to as Regions [3] and [4]). If RI effect 
is significant on either side, the image is classified as a “damaged image.” This ap-
proach ensures accurate classifications – even in those cases where only one side of 
a road shows collapsed buildings. This segmentation method was applied to both 
the mean-based calculation method and the area-based method.

Fig. 4. Image of affected area divided into top, bottom, left, and right portions

The theoretical background for dividing the image into upper and lower as well 
as left and right is based on the formula for straight-line distance in three-dimensional 
space ( 2 2 2D x y z= + + ). As is shown in Figure 4, Dividing Line A for the upper 
and lower regions corresponds approximately to the horizon. It can be visually un-
derstood that the closer an area is to the intersection of Centerline A (horizontal) 
and Centerline B (vertical), the further away the scene that is depicted in the image.

If the shooting position is considered to be the origin, the straight-line distance 
in the image can be calculated. The depth dimension of the image is evenly divided 
by the actual length in the depth direction (x). It becomes apparent that the length 
in the depth direction decreases as it approaches the intersection of A and B (which 
represents distant scenes). Similarly, the lengths in the horizontal (y) and vertical (z) 
directions also decrease as they approach the intersection of Centerlines A and B.

Using these image characteristics, it is evident that the further away an area is 
from the intersection of Centerlines A and B, the smaller the straight-line distance 
values become; this indicates the proximity to the shooting location.
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The purpose of using RI is to detect and map collapsed buildings; therefore, 
any collapsed buildings near a shooting location would have smaller values in the 
vertical direction (z) as well as smaller values in the depth (x) and horizontal (y) di-
rections. This minimizes any errors in the latitude and longitude calculations.

For images that have been captured by a dashcam, the road typically corre-
sponds to the area near the intersection of Centerlines A and B (distant regions); 
these are excluded from the analysis. Hence, dividing the lower half of the image 
into left and right sides and evaluating each side of the road without complex calcu-
lations is deemed to be a more efficient method for obtaining results while minimiz-
ing computational load.

2.4.	 Comparison between Field-Survey Results and Calibrated RI

During the 2024 Noto Peninsula earthquake, more than 100,000 buildings 
were damaged [25]. Based on field survey results by Naito et al.  [26], the propor-
tion of the RI areas was compared with the five damage levels that are defined by 
EMS-98 [27] to determine whether D5 could be appropriately evaluated as “building-
collapse damage.”

3.	 Results

The authors attempted to estimate the scale of damage using two methods based 
on the RI. The first method involves calculating the average RI value for each image 
and classifying it as “damaged” if the average value exceeds a specified threshold; 
this approach is considered to yield results that are generally consistent with tradi-
tional RI calculation methods. The second method classifies an image as “damaged” 
if the proportion of the RI values that meet damage conditions exceeds a certain 
area ratio.

The results revealed three key differences between the classification method 
based on the proportion of the calibrated RI areas and the method that was based 
on the average RI values. These differences demonstrated that calibration outper-
formed the traditional approach in all aspects; the details of this assertion are out-
lined in Sections 3.1 through 3.3.

3.1.	 Standardization of Damage Scale Based on Imaging Conditions

The damage-scale-evaluation method that uses the average RI value for each 
pixel is limited by imaging conditions such as light intensity, weather, and regional 
characteristics. To address this issue, this study employed RI calibration; specifical-
ly, this calibration used images of eroded soil and wood that were specific to the 
local terrain and weather conditions, enabling the standardization of the damage 
scale under these conditions.
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Following the calibration, those pixels with RI values that were close to the ref-
erence image were classified as “damaged pixels”  (A), while those that were far 
from the reference were classified as “non-damaged pixels” (B). The proportion of 
“damaged pixels” relative to the total number of pixels  (V = A/[A + B]) was then 
calculated to quantitatively evaluate the damage scale. This approach allowed for 
highly accurate calculations and a quantitative representation of the damage scale.

For example, the pre-calibration image failed to accurately calculate the par-
tial damage to the building on the right side (as is shown in Figure 5). In the post-
calibration image, however, the proportion of the “damaged pixels” in the lower-
left region was calculated to be 0.001 (0.1%), while the lower-right region showed 
a proportion  (V) of  0.087  (8.7%). These results clarified the quantitative criteria 
for damage classification and demonstrated the improved accuracy in identifying 
“damaged pixels.”

3.2.	 Automation of Thresholds

When setting thresholds by using the average RI value, a manual determination 
of the threshold is required; this manual process can lead to significant time con-
sumptions for damage-scale calculations. When using the proportion of the RI ar-
eas (V) after calibration, however, the process can be automated by employing the 
mean (μ) and standard deviation (σ) of the pixel values.

Fig. 5. Value calculated by average of RI (red area should indicate heavily damaged area,  
but it is, in fact, not shown correctly) (a); value calculated after calibration of RI (b)

a)

b)
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Specifically, the proportion of the RI areas (V) is defined within a range that is 
determined by α times the standard deviation (σ) from the mean (μ) of the pixel val-
ues in the calibration image. This approach enables one to determine that the closer 
the RI value is to the calibration image, the greater the damage scale, and the further 
away it is, the smaller the damage scale. Here, coefficient α is a value that is chosen 
arbitrarily by the experimenter. The proportion of the RI areas  (V) is determined 
based on the standard normal distribution table for a given α. For instance, when 
α is set to 1, the proportion of the RI areas (V) is set at 0.68 (based on the standard 
normal distribution table).

According to the authors’ experimental results, setting α to 0.1 and the propor-
tion of the RI areas (V) to 0.08 enables an accurate approximation of α to the true 
threshold.

3.3.	 Accuracy in Identifying Damage Conditions

Calculations using the average RI  value have often resulted in the misiden-
tifications of damage conditions. For instance, the red car in the lower-left corner 
was incorrectly classified as “damaged” based on the average RI value (as shown 
in Figure 6). In contrast, when the calibrated index was used to calculate the pro-
portion (V) of the total area, the system correctly identified the car as “no damage.”

Fig. 6. Example of misidentification as “damaged” by average RI value (a);  
example of correctly identifying “no damage” to car using proportion of RI area  

after calibration (b)

a)

b)
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3.4.	 Comparison of  
Automatically Generated “Damaged” Maps  
and Field-Survey Results

Using geotagged images, an automatically generated map was created in order 
to identify “damaged” areas based on the standard normal distribution table (where 
values of 0.08 [0.1σ] or higher were classified as “damaged”). As a result, D5− and 
D5+ were accurately identified as “damaged” (as shown in Figure 7).

Fig. 7. Comparison of automatically generated “damaged” map (left)  
and field-survey results (right)

Furthermore, the lower half of the image was obscured by the vehicle’s front 
end, and a correction factor of 2.0 was applied to calculate the proportion of “dam-
aged pixels” that were used in the results (as illustrated in Figure 8).
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3.5.	 Results of RI Calculation

Those pixels that met the calibration conditions were marked in red. An area 
was classified as “damaged” if one side of the image contained more than 0.08 of 
the total proportion. This criterion corresponded to D4–D5 on the EMS-98 scale and 
was considered to be suitable for the early detection of and rapid response to resi-
dential damage.

The following explain the results of the five images that are shown in Figure 7:
	– Image ①①. The proportions of the building damage on both the left and right 

edges were 0.028 and 0.016, respectively, thus resulting in a prediction of “no 
damage” for both sides. The field survey confirmed that this prediction was 
correct, with no damage (D0) being reported. Even though minor damage ap-
peared in the distant area, the estimation method effectively excluded distant 
areas, accurately focusing on nearby damage.

	– Image ②②. The proportions of the building damage on the left and right sides 
were 0.144 and 0.088, respectively, thus predicting “damaged” for both sides. 
The field-survey results confirmed that the left building was D5− while the 
right building was D0. The right building was mistakenly classified as “dam-
aged” due to its slightly reddish-brown color, which caused a false positive.

	– Image ③③. Similar to Image ②, the right building (with its reddish-brown 
color) was misclassified as “damaged.” Addressing areas with prominent 
red tones has been identified as a challenge for future research.

	– Image ④④. Both sides were predicted as “no damage,” which was consistent 
with the field survey that confirmed no damage in the area.

	– Image ⑤⑤. The left side was predicted as “damaged,” and the right side was 
predicted as “no damage.” The field survey confirmed that only the left side 
was damaged, thus demonstrating the accuracy of the damage detection.

Fig. 8. Image with lower area obscured by front end of vehicle



154	 H. Shiraishi, Y. Usuda

For actual damage scales, the average proportion of “damaged pixels” gradu-
ally increased across the D0 to D4 categories. In contrast, the proportions increased 
significantly for D5− and D5+, reaching very high values of 0.138 and 0.136, respec-
tively. Since D5− and D5+ are collectively referred to as D5 in the EMS-98 standard, 
the statistics were also calculated as D5. These results showed that the proportion of 
“damaged pixels” increased significantly when buildings collapsed; this indicated 
that this index is highly effective for measuring severe damage.

Even in the lower-damage categories, a gradual upward trend could be observed; 
this suggested that the index had sufficient accuracy for the early identification of 
significant damage. Among the 15 buildings that were classified as D5 (collapsed), 
14 were correctly identified as “damaged.” Additionally, 14 non-collapsed buildings 
were accurately classified as “no damage” among the 16 buildings (D0–D4) (Table 1).

Table 1. Mean and standard deviation of RI compared to damage in Suzu City,  
Ishikawa Prefecture, during Noto Peninsula earthquake

Damage situation Average of area percentage of RI Standard deviation of RI

D0 0.016 0.014

D1 0.044 0.032

D2 0.032 0.000

D3 0.060 0.010

D4 0.074 0.064

D5 0.138 0.052

D5− 0.136 0.056

D5+ 0.134 0.030

4.	 Discussion

4.1.	 Calculation of 0.1σ and 8% Value

From the calibrated images, those values that exceeded 0.1σ (standard devia-
tion) and represented 8% of the total area were calculated using the combined theo-
retical values from both sides of the normalized standard deviation table. The stand-
ard deviation (σ) reflected the deviation, and those areas that satisfied the calibration 
conditions for local sunlight and weather were considered “damaged.”

4.2.	 Calibration Images

When images that were unrelated to the affected areas were used for calibra-
tion, a significant drop in the accuracy could be observed (as shown in Figure 9). 
This highlighted the importance of conducting one’s calibrations based on regional 
standards.
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4.3.	 Acceleration of Damage Assessment  
Using Geotagged Images and Mapping

Using the burst mode of a smartphone camera allows for multiple still images to 
be saved with GPS information. By comparing the damage-detection results in im-
ages with GPS data, precise location information for D5 damage on the EMS-98 scale 
can be provided. Additionally, larger RI area ratios indicate potentially greater dam-
age, thus suggesting the feasibility of generating quantitative maps. Rapid damage 
assessment facilitates the sharing of information on affected locations and provides 
guidance for safe actions. In initial responses, the ability to reduce the extents of 
human and property losses (and quickly communicate this information) is critical. 
By quantitatively calculating damage levels, it becomes possible to rapidly commu-
nicate and accurately identify “when” something happened, “where” it happened, 
and “what” exactly happened.

4.4.	 Application Studies of RI Index

Chen et al. revealed that, in the context of cotton verticillium wilt (one of the 
most widespread cotton diseases in China and worldwide), the RI value showed the 
highest positive correlation (R² = 0.524) with the disease severity and spectral indices 
among conventional survey methods  [28]. Additionally, RI has been shown to be 
practical and highly accurate for monitoring, thus demonstrating its high applica-
bility in the agricultural sector.

On the other hand, there are no confirmed studies that have applied RI in the 
field of disaster management as far as the authors have investigated; this suggests 
that this is an area with significant potential for future research advancements.

Fig. 9. Example of accuracy degradation when using unrelated images for calibration
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5.	 Conclusion

This study focused on developing a method for swiftly extracting “damage” 
information from disaster-site imagery. The results demonstrated that RI could ef-
fectively assess the scales of building collapses that are caused by earthquakes. The 
novelty of this study lies in developing an image-recognition technique that mini-
mizes computational loads by using only RGB values without relying on machine-
learning or neural networks.

A comparison with field surveys confirmed the fact that this index could quanti-
tatively evaluate disaster scales through the calibrations of disaster-site images. The 
maps that were generated using this index were sufficiently accurate for detecting 
damaged buildings: 14 of 15 buildings that were classified as D5 (collapsed) were 
correctly identified as “damaged,” and 14 of 16 non-collapsed buildings  (D0–D4) 
were accurately classified as “not damaged.”

According to EMS-98, D5 (corresponding to RI ≥ 0.08) is classified as “building-
collapse damage,” while D0–D4 are classified as “no building collapse.” The average 
RI value for the D5-damaged buildings in our study was 0.136, which was signifi-
cantly higher than other categories; this confirmed that the damage was correctly 
recognized.

This analytical approach is highly effective for initial responses that require 
rapid action. Ultimately, the authors aimed to apply this index in participatory GIS 
and public or mutual-aid systems. It is hoped that the use of this index will enable 
a quicker understanding of the safety and damage conditions that typically follow 
disasters.
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