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Abstract: River segmentation is important in delivering essential information for environmen-
tal analytics such as water management, flood/disaster management, observations 
of climate change, or human activities. Advances in remote-sensing technology have 
provided more complex features that limit the traditional approaches’ effectiveness. 
This work uses deep-learning-based models to enhance river extractions from satel-
lite imagery. With Resnet-50 as the backbone network, CNN U-Net and DeepLabv3+ 
were utilized to perform the river segmentation of the Sentinel-1 C-Band synthetic 
aperture radar (SAR) imagery. The SAR data was selected due to its capability to cap-
ture surface details regardless of weather conditions, with VV+VH band polarizations 
being employed to improve water surface reflectivity. A total of 1080 images were 
utilized to train and test the models. The models’ performance was measured using 
the Dice coefficient. The CNN U-Net architecture achieved an accuracy of 0.94, while 
DeepLabv3+ attained an accuracy of 0.92. Although DeepLabv3+ showed more sta-
bility during the training and performed better on wider rivers, CNN U-Net excelled 
at identifying narrow rivers. In conclusion, a river-segmentation model was conduct-
ed using Sentinel-1 C-Band SAR data, with CNN U-Net outperforming DeepLabv3+; 
this enabled detailed river mapping for irrigation- and flood- monitoring applica-
tions – particularly in cloud-prone tropical regions.
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1. Introduction

The accurate extraction of river information from remote-sensing images has 
always been a significant area of research for future planning, including irrigation, 
river monitoring, flood mapping, and comprehensive watershed management [1–4]. 
One important task in obtaining river information is extracting the river areas with-
in the images. Traditional river-segmentation methods for remote-sensing images 
primarily include morphology, thresholding [5], edge detection [6], clustering [7], 
filtering [8] and band ratio as well as some machine-learning methods such as sup-
port vector machine [9], random forest [10], and maximum likelihood [11]. Howev-
er, conducting a manual segmentation of river areas is time-consuming and labor- 
intensive – even on a small scale; this makes it increasingly impractical for large- scale 
global assessments.

Thresholding-based segmentation and surface features such as ponds, lakes, and 
seas can exhibit values that closely represent or even match a river, thus introducing 
significant noise and reducing the segmentation’s accuracy in isolating the river [1]. 
Similarly, morphological operations like opening and closing can alter the river’s 
geometry, leading to such inconsistencies as narrowing the river or distorting its 
actual shape [12]. With the continuous advancements in remote-sensing technology, 
the complexity of surface features in imagery has additionally increased, making 
non-river interference more prominent; this causes the more challenging extraction 
of river information due to features that are more complex and harder to distinguish 
than their surrounding noises.

Therefore, the advancement of satellite remote-sensing technology could make 
river mapping easier while significantly reducing one’s time constraints. More- 
advanced methods such as deep learning are necessary to extract river areas more 
effectively and accurately. Deep-learning architectures are advanced machine- 
learning techniques that enhance computational performance and accuracy by in-
creasing a network’s number of layers or the overall depth [13]. In recent years, the 
use of deep learning in satellite remote-sensing data has been widely applied in 
various fields [14–16]; semantic segmentation [17–20] is one of the deep- learning 
methods that are widely used for processing remote-sensing images [21–24]. Seman-
tic segmentation is computer vision that involves classifying each pixel of an image 
into a predefined category. The CNN U-Net architecture works by its skip connec-
tions; these link the encoder and decoder layers at their corresponding levels, which 
helps to retain high-resolution features and recover spatial information that may 
be lost during the down-sampling. The DeepLabv3+ architecture leverages atrous 
convolutions, which enable control over the receptive field without reducing the 
spatial resolutions of feature maps (thus, effectively capturing multiscale contextual 
information) [25, 26].

Furthermore, satellite imagery is vital in delivering consistent, comprehensive, 
and detailed data on the Earth’s surface to allow for the monitoring, analysis, and 
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management of environmental conditions across vast areas. The SAR satellite is an 
active remote-sensing technology that utilizes microwave radar signals to capture 
images of the Earth. It emits radio waves toward the surface and records the echoes 
that return [27]. One of the primary advantages of SAR is its ability to obtain high- 
resolution images – even through cloud cover [28]. SAR sensors can also operate both 
during the daylight hours and at night regardless of weather conditions [9, 11, 29], 
making it well-suited for obtaining imagery for river segmentation.

This paper uses SAR imagery from Copernicus, which is Sentinel 1 Level-1 
C-Band Ground Range Detected (GRD) Interferometric Wide Swath (IW) – a seman-
tic segmentation approach for detecting river areas. The models that were used for 
this task were CNN U-Net and DeepLabv3+, which were trained on the data set to 
identify the river regions. The effectiveness of the models was assessed and com-
pared based on their Dice coefficient performances.

2. Related Works

Research that is focused on segmentation using remote-sensing data (especially 
river segmentation) is relatively scarce for several reasons. One significant reason is 
the need for multiple processing steps to isolate only the river while excluding other 
water bodies such as lakes, ponds, and wetlands. This complexity increases the dif-
ficulty of accurately identifying and classifying river features.

Previous studies have used semi-automatic methods such as thresholding, 
morphology, and edge detection for river detection. For instance, Zhu et al. [5] uti-
lized the Otsu thresholding algorithm combined with morphological features to ex-
tract river channels in SAR imagery. The method began with gray threshold-based 
image segmentation to remove any background noise, followed by a novel morpho-
logical model for river channel identification. After the rough extraction, the gray 
threshold segmentation was reapplied to refine the results, and a morphological 
filter was used for correction. Yang et al. [8] detected river networks in the Yukon 
Basin and the Greenland Ice Sheet by combining Gabor filtering and path open-
ing in Landsat 8 remote-sensing imagery. The utilization of Gabor filtering was 
to make the rivers’ shapes stand out from their surroundings, while path opening 
extended the lengths of the rivers and removes unwanted details. However, these 
semi- automatic methods had certain limitations, such as requiring multiple steps to 
achieve accurate river- area extraction. Additionally, these steps needed to be repeat-
ed each time when classifying new rivers, thus making the process time-consuming 
and less efficient.

The deep-learning approach is seen as an effective solution for overcoming 
the shortcomings of the semi-automatic methods, as it can be applied to river- 
data segmentation without the need for repetitive preprocessing each time a new 
river area needs to be segmented. Verma et al. [30] employed CNN U-Net and 
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DeepLabv3+ for semantic segmentation in coastal areas. This research had two 
primary objectives: developing a river-segmentation model, and measuring river 
width by determining the river skeleton. The data set that was used in the study 
was comprised of Sentinel-1 satellite imagery with VH-band polarization. The orig-
inal 2048 × 3072-pixel images were tiled into 256 × 256-pixel segments and manually 
hand-labeled as rivers and non-rivers. The CNN U-Net and DeepLabv3+ architec-
tures achieved the same mean Intersection over Union (mIoU) metric (96%); how-
ever, DeepLabv3+ outperformed CNN U-Net by 1% in the F1-score, achieving 98% 
as compared to CNN U-Net’s 97%. The river data set for this study only covered 
rivers that had large surfaces; a river that was close to a populated area was not 
contained in the data set.

Pai et al. [2] conducted semantic river segmentation using satellite SAR im-
agery. The architectures that were employed were a CNN U-Net model that was 
built from scratch and a pre-trained CNN U-Net model with weights that were 
learned from the ISBI 2015 Cell Tracking data set. The study yielded highly accurate 
results, with the Vanilla CNN U-Net and Transfer CNN U-Net each achieving a pre-
cision of 0.99 and a mIoU of 0.95.

Cai et al. [31] utilized the Gaofen Image data set (GID) and the Remote-Sensing 
Image Block Segmentation data set (BDCI) in order to employ river segmentation 
using the CNN U-Net architecture enhanced with VGG16 and ResNet 34 to improve 
the detections of river edges with greater detail. The experimental results indicat-
ed that the mIoU of the ResNet34 CNN U-Net network on the GID-river data set 
reached 93.6%, while the mean Pixel Accuracy (mPA) of the VGG16 CNN U-Net net-
work on the BDCI river data set reached 82.1%.

Chen et al. [32] developed the ASA-DRNet architecture – an improved ver-
sion of the DeepLabv3+ framework. This architecture was designed to detect oil-
spill pollution in the ocean more accurately using SAR imagery. The backbone 
network combined an axial self-attention module with ResNet-18 and an atrous 
spatial pyramid pooling (ASPP) optimized to enhance the network’s capacity. 
ASA-DRNet achieved an mIoU accuracy of 0.6447, thus showing a significant 
improvement when compared to the CNN U-Net architecture (which had an ac-
curacy of 0.5925).

Prior river-segmentation research (especially when using traditional meth-
ods) has often been hampered by time-consuming manual processes and mis-
classifications. While deep learning offers improved efficiency, existing studies 
still show varied performance and lack a clear consensus on optimal architec-
tures for detailed river extraction. This work aims to enhance river extraction 
from Sentinel-1 C-Band SAR imagery using CNN U-Net and DeepLabv3+. Our 
innovation lies in a comprehensive comparative analysis of these models for de-
tailed SAR-based river segmentation that specifically highlights their differential 
strengths for narrow versus wide rivers – a crucial contribution for applications 
in cloud-prone regions.
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3. Materials and Methods

The research methodology is organized into four main stages: data collection, 
data preprocessing, model training, and performance evaluation (as illustrated in 
Figure 1).

Fig. 1. Research methodology workflow
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3.1. Data Collection

This research utilized SAR data from the Sentinel-1 Level 1 C-Band SAR 
GRD IW mode that was acquired from the Google Earth Engine (GEE) platform. 
The collected data was partitioned into training, validation, and test sets from the 
outset to ensure that the test data remained entirely unseen by the models during 
their development and training phases, thereby enabling an unbiased assessment 
of the generalizability.

Sentinel-1 GRD products were chosen because they are Level-1 processed; 
this means that the data is detected, multi-looked, and georeferenced using the 
WGS84 Earth ellipsoid (which reduces noise and speckle). SAR atellites use ver-
tical (V) and horizontal (H) polarization to transmit and receive signals. The 
Sentinel-1 GRD IW data provides single- and dual-polarization options. Single 
polarization includes VV (vertical transmit and receive) or HH (horizontal trans-
mit and receive), while dual polarization includes VV+VH (vertical transmit, verti-
cal and horizontal receive) or HH+HV (horizontal transmit, horizontal and vertical 
receive). This study focuses on VH polarization, as it correlates more strongly with 
reference water masks than VV polarization and is more effective for detecting sur-
face water [33].

For this study, a total of 30 Sentinel-1 Level-1 C-Band SAR GRD satellite images 
were extracted using GEE, with TIFF file sizes varying depending on the river cov-
erage (from a minimum of 792 × 1308 pixels to a maximum of 10,458 × 9556 pixels). 
The extracted bands included VV, VH, and a calculation of the VV+VH polarization 
(VV+VH polarization was chosen because it can map water surfaces more clearly). 
The polygon creation for mapping the area and dimensions of the region of inter-
est was part of the data-extraction process. The differing widths and heights of the 
pixels were due to limitations in GEE’s precise polygon definition; these necessitat-
ed manual approximations. The selected areas covered locations along the Mekong 
River, capturing diverse river segments (including its tributary network).

3.2. Data Preprocessing

The data preprocessing encompassed: (1) overlapping and tiling, (2) clustering, 
and (3) noise removal and labeling.

Overlapping and Tiling

The extracted raw satellite data was tilled to cut the data into smaller resolu-
tions; this aimed to increase the data set and provide different highlights for each 
bit of the data. An overlap tiling process was applied to the tiling process from the 
30 images that had been extracted, resulting in 2048 × 2048-pixel tiles with an overlap 
of half the desired resolution size in order to increase the data set, provide different 
highlights, and minimize data loss. This process yielded 181 images after excluding 
those tiles that contained only river or non-river sections in order to avoid bias.
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Clustering: Pre-Labeling Process
Each tile was processed using the k-means clustering algorithm (k = 4) to stream-

line the pre-labeling of the river and non-river areas, thus minimizing manual effort 
and highlighting the major rivers. The clustering output was a binary image where 
the river areas were preserved as the foreground. One example of the clustering pro-
cess is shown in Figure 2; the first-row images stored the river area information in 
only one cluster, and the second-row images showed that the river information was 
stored in the two different clusters that needed to be combined/merged.

a)

b)

Fig. 2. Representative images from k-means clustering process (a);  
step-by-step process for mask data creation (b)

Noise Removal and Labeling
Despite applying clustering, non-river areas with similar characteristics 

(e.g., ponds, lakes) were still clustered as river areas. These “noise” elements were 
manually removed using image-processing applications by reclassifying non- river 
foreground pixels as background. The step-by-step processes in creating the label 
data are shown in the third-row images of Figure 2. Manual labeling was also per-
formed for unclear or faint river features, and those smaller rivers that were missed 
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by the clustering process were manually added by overlaying the clustering results 
on the original data. If multiple clusters contained river data, they were merged into 
a single binary image (white for rivers, and black for non-rivers). The binary cluster-
ing data was then converted from TIFF to the PNG format.

Data Augmentation
After the extracted data underwent preprocessing, data augmentation was ap-

plied in order to increase the quantity and variety of the data set. This step was cru-
cial, as any changes in the river areas were typically insignificant over short periods. 
Therefore, artificial augmentation was used to enhance the data for modeling purpos-
es. Data augmentation was applied to the training data through horizontal flipping, 
vertical flipping, zoom out, zoom in, and 45-degree-counterclockwise rotation. After 
augmentation, the final data set was comprised of 1080 images, including the original 
images and their corresponding masks. The data set was carefully divided into train-
ing, validation, and test sets, with the test set being kept completely separate and un-
used during the model’s development. This separation helped evaluate how well the 
model performed on new data, including different river shapes and environmental 
conditions that were not seen during the training. The train-to-test ratio was set at 9:1, 
with 90% of the data (972 entries) being used for the training. The remaining 10% 
(108 entries) was split evenly into 50% for the validation and 50% for the testing.

3.3. Model Training

The 972 training samples were used to train two deep-learning architectures: 
CNN U-Net, and DeepLabv3+. Both models received original and labeled data 
as inputs in the PNG format. Due to hardware limitations, the batch size was set 
to 8. After hyperparameter tuning, a learning rate of 1e-4 was chosen. The train-
ing was conducted for 150 epochs; however, optimal results were typically reached 
around the 100th epoch, thus leading to earlier stopping via the EarlyStopping call-
back. The Adam optimizer was used for the model optimization. Both architectures 
utilized four callbacks: ModelCheckpoint, ReduceLROnPlateau, CSVLogger, and 
EarlyStopping (as shown in Table 1).

Table 1. Hyperparameter list that was used in this work

Hyperparameters Values
Batch size 8
Learning rate 1e-4
Epochs 150
Callbacks ModelCheckpoint, ReduceLROnPlateu, CSVLogger, EarlyStopping
Activation function (CNN U-Net) ReLU
Activation function (DeepLabv3+) ReLU
Optimizer Adam
Backbone network (DeepLabv3+) ResNet50
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ModelCheckpoint saved the best-performing model based on validation met-
rics, ReduceLROnPlateau lowered the learning rate if the validation loss stagnated, 
CSVLogger recorded the training and validation metrics, and EarlyStopping pre-
vented overfitting by halting the training when the validation loss ceased to improve.

CNN U-Net Architecture for Semantic Segmentation
The CNN U-Net architecture is a popular semantic segmentation architecture 

that was initially proposed for biomedical image segmentation by Ronneberg-
er et al. [34]. As is shown in Figure 3, CNN U-Net consists of three paths: a contract-
ing path (encoder), a bridge layer, and an expansive path (decoder). The contracting 
path uses repeated 3 × 3 convolutions with rectified linear unit (ReLU) activation 
and 2 × 2 max pooling for downsampling, thus doubling the feature channels at 
each step. The bridge layer connects the paths, while the expansive path involves 
up-sampling, 2 × 2 up-convolution, concatenation with cropped feature maps from 
the contracting path, and two 3 × 3 convolutions with ReLU.

Fig. 3. CNN U-Net architecture (adapted from [34])

Cropping compensates for any border pixel loss during convolution. The final 
layer uses a 1 × 1 convolution for class mapping. The network has 23 convolution-
al layers with copy and crop operations for enhancing localization and retaining 
high-level semantic information [2, 34]. This study used the original CNN U-Net with 
added BatchNormalization layers. The images were input as three-channel tensor 
data, and the labels were input as single-channel data; both were normalized to [0, 1].



48 N.P.K. Dewi et al.

DeepLabv3+ Architecture for Semantic Segmentation
The DeepLabv3+ model is an advanced version of a typical fully convolutional 

network (FCN) that excels in semantic segmentation by leveraging contextual in-
formation [3]. As the latest iteration in the DeepLab series, the DeepLabv3+ archi-
tecture incorporates an ASPP module based on spatial pyramid pooling (SPP) from 
DeepLabv3. The model uses parallel atrous convolutions at various rates to capture 
contextual features at multiple scales [35].

Additionally, it employs an encoder-decoder structure. The encoder captures 
rich contextual features using atrous convolutions and ASPP, while the decoder re-
fines predictions at higher resolutions, thus improving the boundary accuracy and 
detail [3]. The decoder up-samples coarse feature maps and merges them with the 
higher-resolution features from the earlier layers. DeepLabv3+ offers advantages 
like improved boundary refinement and the better handling of small objects. This re-
search used DeepLabv3+ with ResNet50 as a backbone, specifically utilizing the out-
put of the conv4_block_6_out layer for its high-level semantic information (shown 
in Figure 4). Similar to CNN U-Net, the images were three-channel tensor data, and 
the labels were single-channel; both were normalized to [0, 1].

Fig. 4. Proposed DeepLabv3+ architecture using ResNet-50 as network backbone

3.4. Performance Evaluation

The data set that was trained with the U-Net and DeepLabv3+ architectures 
was evaluated using several metrics to assess the performance; these included the 
Dice coefficient, F1-score, Jaccard Index, recall, and precision. The Dice coefficient is 
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a primary metric that is used to assess the similarity between two sets (Y and Y pre-
diction), with values that range from 0 to 1 [36]; a value of 1 indicates perfect similar-
ity, while a value of 0 signifies no overlap between sets. The Dice coefficient is partic-
ularly important for evaluating image-segmentation performance, as it quantifies the 
spatial overlap between the ground truth and the predicted segmentation output [35].

The Dice coefficient is calculated as follows:

 
∩

=
+

 2 pred

pred

Y Y
Dice Coefficient

Y Y
 (1)

Conversely, the Dice loss is calculated as follows:

 = − 1  Dice Loss Dice Coefficient  (2)

This metric is important for image segmentation, as it quantifies any spatial 
overlap between the ground truth and the predicted segmentation outputs. The 
Dice coefficient is particularly advantageous for imbalanced data sets and is highly 
sensitive to overlapping between predicted and ground-truth masks. Segmentation 
masks are treated as binary pixel sets. A high Dice coefficient indicates effective seg-
mentation performance, while a low value reflects poor performance. The Dice loss 
was used to measure the error percentage (defined as the 1 − Dice coefficient). Along 
with the F1-score, Jaccard, recall, and precision, the Dice coefficient was used to assess 
the model’s generalizability across diverse river characteristics in the unseen test set.

In addition to the Dice coefficient, the models’ performance was also evaluated 
using the F1-score, Jaccard index, recall, and precision. The F1-score provides a bal-
ance between precision and recall, thus offering a single score that represents the 
harmonic mean of the two. The Jaccard index measures the similarity and diversity 
of the sample sets; these are calculated as the area of the intersection divided by 
the area of the union of the predicted and ground-truth-segmentation masks. While 
recall measures the proportion of the actual positive pixels that are correctly identi-
fied by the model, precision measures the proportion of correctly identified positive 
pixels out of all of the pixels that the model predicted as being positive.

4. Results and Discussion
4.1. Comparison Analysis

The analyses of selected test images provided insight into how the CNN U-Net 
and DeepLabv3+ models performed on various river shapes and environmental con-
ditions from the unseen test set (complementing the scores in Table 2). The differing 
performance trajectories and subsequent test results were largely attributed to the fun-
damental architectural designs of CNN U-Net and DeepLabv3+. CNN U-Net excels at 
capturing fine details and precise localizations due to its skip connections, while Deep-
Labv3+ is designed for robust contextual understandings through atrous convolutions.
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Table 2. Dice coefficient matrix of CNN U-Net and DeepLabv3+ architecture

Architecture Dice 
coefficient

Dice 
loss

Validation 
Dice 

coefficient

Validation 
Dice loss

F1-
score Jaccard Recall Precision

CNN U-Net 0.94 0.05 0.93 0.06 0.91 0.87 0.91 0.93

DeepLabv3+ 0.92 0.07 0.92 0.07 0.83 0.78 0.83 0.87

The DeepLabv3+ architecture is well-known for its ability to effectively map glob-
al information; it leverages atrous convolutions at multiple dilation rates within its 
ASPP module to effectively capture features across different spatial scales. This multi-
scale context modeling is advantageous for interpreting larger structures and overall 
scene layouts. While it excels at capturing broad semantic information, however, it may 
be less precise in delineating fine boundaries or narrow features – particularly when 
compared to CNN U-Net’s direct feature concatenation through skip connections.

The DeepLabv3+ architecture’s training graph demonstrated a smooth progres-
sion with no significant drops in accuracy or sudden spikes in loss throughout the 
training process; this is depicted in Figure 5.

Fig. 5. Training history of DeepLabv3+ architecture

The DeepLabv3+ architecture is known for its effective global-information map-
ping; it leverages atrous convolutions at multiple dilation rates within its ASPP mod-
ule to effectively capture features across different spatial scales. This multi-scale con-
text modeling is advantageous for interpreting larger structures and overall scene 
layouts. While it excels at capturing broad semantic information, however, it may 
be less precise in delineating fine boundaries or narrow features when compared 
to CNN U-Net’s direct feature concatenation through skip connections. During the 
testing, the DeepLabv3+ model achieved a Dice coefficient accuracy of 0.928 and 
a Dice loss of 0.071. Training concluded at the 86th epoch out of 100. The validation 
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metrics mirrored the training results, with a validation Dice coefficient of 0.928 and 
a validation loss of 0.071.

In contrast, CNN U-Net’s accuracy gradually increased over time as the num-
ber of epochs increased; this is shown in Figure 6. The CNN U-Net architecture is 
renowned for its ability to perform effective segmentation – even with limited data 
sets. Its unique skip connections directly link encoder and decoder layers at their 
corresponding levels. These connections are crucial for retaining high-resolution 
features and recovering spatial information that may be lost during down-sampling, 
thus enabling highly accurate segmentation maps and the capturing of intricate de-
tails. This architectural advantage is particularly beneficial for identifying narrow 
structures like rivers. The CNN U-Net model was trained for 100 epochs with a batch 
size of 8; it utilized an early stopping callback. The model achieved a Dice coefficient 
accuracy of 0.944 and a Dice loss of 0.053, with the training halting at the 64th epoch. 
The validation Dice coefficient for the CNN U-Net architecture reached 0.939, with 
a validation loss of 0.071. The performance-evaluation metrics for both architectures 
are summarized in Table 2.

Fig. 6. Training history of CNN U-Net architecture

CNN U-Net’s architectural design (particularly, its skip connections) allows it 
to effectively preserve spatial information and capture the intricate details of nar-
row features, thus leading to its superior performance in identifying such elements. 
This ability to capture fine details and downscale models effectively is a known ad-
vantage in deep-learning applications (as evidenced by studies on enhanced urban- 
flood modeling using similar principles) [37].

CNN U-Net also performed better in predicting larger rivers when compared to 
DeepLabv3+, as it effectively recognized the characteristics of the rivers and labeled 
them accurately to reflect their actual formations. To illustrate these insights into 
its generalizability, specific case studies from the unseen test set are examined be-
low; these provide qualitative and quantitative breakdowns of the model’s behavior 
across different river complexities. A visualization of the testing results using both 
models is shown in Figure 7.
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4.2. Generalizability Insights from Diverse Test Cases
Case Study: Very Large River Areas
This case study examined the models’ generalizabilities when segmenting very 

large river areas (as visualized in Figure 8).

Fig. 8. Performance visualizations of CNN U-Net and DeepLabv3+ on very large river areas

In those images with very large river areas, both CNN U-Net and DeepLabv3+ 
effectively segmented river and non-river boundaries (closely matching the labeled 
images); this is visualized in Figure 8. The average recall scores were high, with 
CNN U-Net at around 0.99 and DeepLabv3+ between 0.97 and 0.99. CNN U-Net 
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captured fine details that were similar to the labeled images but introduced more 
noise (such as black or non-river pixels) within the river areas; these were absent 
in the labeled images. While DeepLabv3+ exhibited some noise in its predictions, 
this was less pronounced as compared to CNN U-Net. DeepLabv3+ also produced 
smoother and cleaner predictions, generally capturing small details with a more 
generalized approach, resulting in clearer and more-defined shapes.

Case Study: Medium-Scale River Areas
This case study evaluated the models’ generalizabilities with medium-scale riv-

er areas (illustrated in Figure 9).

Fig. 9. Performance visualizations of CNN U-Net and DeepLabv3+ on medium-scale rivers
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When evaluating medium-scale river areas (Fig. 9), CNN U-Net tended to map 
these areas as rivers but included some non-river regions (black pixels) with shallow 
waters or sediment. The DeepLabv3+ model, however, produced more-solid pre-
dictions by avoiding the misclassification of low-water areas as rivers. DeepLabv3+ 
demonstrated a better ability to exclude these areas from its river predictions, where-
as CNN U-Net tended to include them.

Case Study: Small River Areas
This case study assessed the models’ generalizabilities to very small river areas 

(depicted in Figure 10).

Fig. 10. Performance visualizations of CNN U-Net and DeepLabv3+ on small-scale rivers
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Case Study: Complex River Areas  
(Braided and Branched Rivers)
This section evaluates the models’ generalizabilities to complex river areas – 

specifically, braided and branched river systems.
In the testing data, a river with a highly complex area was included; it featured 

a main river with many narrow tributaries and surrounding sediments or sands 
(as observed in Google Satellite and Sentinel-1 satellite imagery). The testing results 
for these complex braided river images differed between the CNN U-Net and Deep-
Labv3+ architectures; this is visualized in Figure 11.

Fig. 11. Performance visualizations of CNN U-Net and DeepLabv3+ on braided rivers
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CNN U-Net tended to predict the finer branches of the river – even when 
the grayscale intensity was not very dark in the original image. In contrast, Deep-
Labv3+ predicted the darker areas; these could be defined as parts of the main river. 
Based on these testing results, CNN U-Net’s predictions were better as compared 
to DeepLabv3+’s. For this type of complex data, CNN U-Net’s performance was 
significantly superior to DeepLabv3+’s, as its sensitivity enabled it to predict even 
highly complex river patterns. Because DeepLabv3+ tends to focus on global con-
text, it conversely struggled to predict the finer branches or narrower tributaries 
of the river. Despite DeepLabv3+’s drawback of being less effective in detecting 
small/narrow rivers alongside larger rivers, it was still capable of mapping the main 
rivers and their tributaries (albeit, not as accurately as CNN U-Net). CNN U-Net 
was highly precise in predicting water segments that remained connected to the 
main rivers, making it easier to predict the details of smaller and narrower rivers.

The testing data also included images of rivers with unusual shapes and that 
featured unique branches and curves. When comparing how well the predicted 
river shapes matched the labeled data, DeepLabv3+ tended to perform better. Its 
predictions focused only on the river areas without including other objects that 
were not parts of the rivers. On the other hand, CNN U-Net sometimes misclassi-
fied non- river water bodies as rivers; that being said, CNN U-Net performed bet-
ter in accurately capturing non-river areas within the rivers (black gaps or holes in 
the river areas). These gaps aligned more closely with the labeled data when com-
pared to DeepLabv3+. The performance discrepancy between the CNN U-Net and 
DeepLabv3+ architectures on complex branched river images is shown in Figure 12.

Both CNN U-Net and DeepLabv3+ were equally capable of predicting very small 
rivers effectively (as depicted in Figure 10). In some instances, a discontinuity might 
have appeared in the lower part of a river (where a few pixels were predicted as 
being non-river); this was considered to be reasonable given that the river areas at 
the very bottoms consisted of only 1–2 pixels. Aside from these minor instances, the 
images with small river areas generally appeared very well-segmented with no major 
discontinuities. Both architectures successfully completed the training and yielded 
satisfactory results where they could distinguish river areas from similar features like 
ponds and lakes. Overall, the architectural differences between CNN U-Net’s precise 
localization via skip connections and DeepLabv3+’s global contextual understanding 
through atrous convolutions directly explained their observed strengths and weak-
nesses in river segmentation. The model that was trained using the CNN U-Net ar-
chitecture provided more-detailed predictions when compared to the DeepLabv3+ 
model. CNN U-Net was better at detecting small rivers in the images (though not 
as clearly as the ground truth; this was due to some river pixels being misclassified as 
being non-river). The results showed that CNN U-Net excelled in segmenting fine de-
tails (including narrow river segments) but demonstrated limitations in distinguish-
ing non-river water areas from the rivers. The DeepLabv3+ model was less accurate in 
predicting small rivers, but it performed just as well as CNN U-Net for larger rivers.
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5. Conclusion

This research focused on developing a semantic segmentation model for riv-
ers using SAR satellite data from Sentinel-1 C-Band Ground-Range Detected IW; 
this aimed to provide detailed river mapping for applications such as irrigation and 
flood monitoring – particularly in cloud-prone tropical regions.

Two deep-learning architectures (CNN U-Net and DeepLabv3+) were cho-
sen for model training, which was performed on a data set that was augmented 

Fig. 12. Performance visualizations of CNN U-Net and DeepLabv3+ on branched rivers
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to 1024 images. The testing results showed that CNN U-Net outperformed DeepLabv3+ 
in classifying rivers, with a Dice coefficient accuracy of 0.94 as compared to 0.92 for 
DeepLabv3+.

A detailed analysis revealed their distinct strengths and weaknesses. CNN U-Net 
excelled in segmenting fine details (including narrow river segments) and provided 
more-detailed predictions. Conversely, DeepLabv3+ demonstrated greater stability 
during the training and performed better on wider rivers (offering smoother and 
cleaner segmentations). While CNN U-Net sometimes struggled with distinguish-
ing non-river water bodies from rivers, DeepLabv3+ showed better generalizations 
in such cases by avoiding over-segmentation. Conversely, DeepLabv3+ occasionally 
missed some small river details due to its more global segmentation approach.

Case studies from the unseen test set showed that the models could handle 
a range of river shapes and environmental conditions, thus supporting their abilities 
to generalize. Future work should focus on testing the models with entirely new 
data from different regions and time periods; this would offer a stronger assessment 
of how well the models can perform across global river systems and environmental 
conditions that were not covered in the current data set.
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