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Abstract:	 Sustainable development is contingent upon the efficient management of land 
resources for resolving spatial challenges such as land-use conflicts and frag-
mentation. A land-suitability model offers a potential instrument for assessing 
land-use/land-cover  (LULC) consistency with spatial plans. This study employed 
a data-driven probabilistic approach using a support vector machine (SVM) algo-
rithm and error-correcting output codes (ECOCs) for incorporating 11 physical pa-
rameters to generate spatial grids that reflected land-suitability levels. The proba-
bilistic outputs were derived by calibrating SVM decision values using Platt scaling 
within the ECOC  framework, enabling a reliable estimation of class-wise land-
suitability probabilities. The model achieved the highest probability value of 0.9952, 
with an average of 0.8251; this demonstrated its potential for assessing the consist-
ency of land use/land cover with spatial plans. The model exhibited robust perfor-
mance and substantial agreement between the predictions and actual data, with an 
overall accuracy of 88.56% and a kappa index of 0.873. Additionally, the study uti-
lized a land-suitability model and non-weighted overlay relevance matrix to identify 
discrepancies in Bogor Regency’s spatial plan, quantifying the compliant and non-
compliant land areas for each LULC class within specified spatial-plan zones. The 
evaluation revealed a significant misalignment, with 25–45% of agricultural land uses 
that included wetland and dryland agriculture, plantations, and inland fish farms 
being allocated within settlement zones; this indicated a mismatch between spatial 
plans and land suitability. These findings underscored the importance of evaluating 
and revising the spatial plan to enhance its alignment with land suitability.
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1.	 Introduction

Evaluating spatial plans according to land-use/land-cover (LULC) distribution 
is a strategic method for obtaining an optimal LULC in regional planning. Spatial-
planning evaluation is a multifaceted process that requires an approach that is capa-
ble of addressing key concerns and providing relevant information to policymakers 
about the impacts of spatial-planning instruments [1]. By aligning spatial plans with 
LULC suitability, optimal land use can be achieved in sustainable planning. Land 
suitability facilitates the identification of the most-suitable LULC for each location 
according to its distinctive features [2, 3]. This approach enables the identification 
of feasible spatial plans that effectively address land-use allocation and planning 
issues [4, 5]. Such evaluations can assist in mitigating issues that include the agri-
cultural land fragmentation and urban sprawl that is caused by uncontrolled expan-
sion  [6,  7]. Land-fragmentation and land-use conflicts underscore the importance 
of land-use planning as an essential component of sustainable development [8, 9]. 
In this context, land-suitability analysis is crucial for identifying suitable locations 
for different land-use classes, ensuring that land-allocation decisions align with 
an area’s specific characteristics (thereby promoting sustainable land-use plan-
ning) [10].

Spatial-planning evaluation encompasses beyond the design and implementa-
tion stages and incorporates governance-related factors  [11]. Evaluation methods 
are essential for analyzing land-suitability and spatial-extent availability as potential 
and constraints of land for specific uses [12]. A spatial-planning evaluation distin-
guishes two main perspectives: conformance, and performance. The conformance 
perspective assesses how well planning objectives align with actual outcomes. This 
approach utilizes quantitative methods, such as field surveys and spatial analysis; 
however, it has drawbacks, including a lack of ability for explaining gaps between 
objectives and results (since spatial plans are treated mainly as benchmarks). Con-
versely, the performance perspective emphasizes the significance of spatial plans in 
decision-making processes, acknowledging that plans are not rigid blueprints but 
rather subject to interpretation and adjustment. In Indonesian spatial-planning prac-
tice, for instance, local governments may reallocate designated agricultural zones 
into settlements due to population-growth pressures (as can be seen in peri-urban 
areas such as IKN  Nusantara, the north coast of West Java, and Jakarta)  [13–15]. 
Similarly, previous studies have also demonstrated that protected zones in Sulawesi 
were modified based on field negotiations despite existing zoning regulations [16]. 
These two perspectives reinforce one another [17].

Several studies have evaluated spatial planning through land suitability using 
various approaches, including the developments of suitability indices and scoring 
for spatial planning [18]. However, the suitability indices that have been present-
ed in previous studies have often been limited in applicability and were specific to 
the study areas despite utilizing comprehensive evaluation frameworks that were 
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not always practical for broader applications [19]. Land-suitability assessments that 
utilized remote sensing and spatial analysis with physical parameters have been 
employed to evaluate existing settlements for their potential use in development 
planning [16]. While this study successfully identified and assessed land suitability, 
its scope was restricted to settlement areas; the evaluation process remained pre-
dominantly qualitative. However, many rely on index-based or scoring techniques 
that are often subjective and limited to qualitative interpretation [10, 19].

To overcome such limitations, this study adopts a probabilistic machine-learning 
approach using a support vector machine  (SVM) algorithm and error-correcting 
output codes (ECOCs) to classify land suitability based on 11 physical parameters. 
This data-driven method allows for the derivation of suitability as probability val-
ues, thus providing quantitative confidence levels for each LULC class. Unlike prior 
studies that have relied on heuristic weights or local scoring, our approach improves 
the objectivity, enhances the model generalizability, and enables a fine-resolution 
spatial analysis using grid-based modeling. Furthermore, this study integrates the 
suitability output with a relevance matrix to identify spatial mismatches, offering 
a novel and data-driven framework for evaluating spatial-plan alignment more sys-
tematically.

Recent developments have highlighted the strengths of probabilistic and data-
driven approaches in spatial-planning and land-use evaluation. Techniques such as 
ensemble classifiers, Bayesian inference, and probabilistic optimization have proven 
to be effective in quantifying uncertainty and generating confidence-weighted suit-
ability maps – particularly in dynamic and complex landscapes [20]. Probabilistic 
frameworks have been used to detect land-cover changes [21], optimize land use un-
der planning constraints [20], and enhance land-cover classifications using Sentinel-2 
imagery [22]. Additionally, the robustness of probabilistic SVMs in handling complex 
terrains have been highlighted for improving LULC-mapping accuracy [23].

Support vector machines  (SVMs) have particularly demonstrated strong per-
formance due to their capacities to manage multi-dimensional inputs and nonlin-
ear class boundaries. Their applications have included crop mapping in Iran using 
fused Sentinel-1 and  -2 data (92% accuracy, kappa – 0.86)  [24] and spatial alloca-
tion in Java using ECOC-SVM with ecological footprint analysis (86.46% accuracy, 
kappa – 0.812) [25]. Optimization techniques such as firefly algorithm optimization 
have boosted accuracy in soybean-suitability classification [26]. Comparative stud-
ies have  confirmed SVMs’ robustness across various agricultural contexts, where 
they have performed competitively against ensemble methods like gradient boost-
ing [27, 28]. These findings have supported the use of SVM-ECOC frameworks for 
producing accurate data-driven assessments for spatial planning.

Land-suitability assessment is essential for ensuring that land use aligns with 
physical characteristics and land potential [17, 18]. Numerous studies have empha-
sized the importance of using measurable parameters such as slope, soil, and cli-
mate to produce accurate and systematic evaluations [29–31]. Methods like MCDA 
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and AHP have been applied to prioritize criteria based on expert judgments, with 
data being normalized to standardized scales for consistent analysis  [25,  31,  32]. 
These approaches have helped to address spatial complexity and support effective 
land allocation in planning. Building on these foundations, [25]  employed FAO-
based land characteristics, applying min-max normalization within a 0–1 range and 
distributing values spatially using the maximum combined area  (MCA) method. 
Similarly, Nyeko  [32] emphasized the role of physical indicators in defining land 
capacity through a GIS-integrated MCDA framework that combined empirical data 
with expert assessments. Collectively, these studies have demonstrated that inte-
grating standardized physical parameters with spatial and decision-support tools is 
fundamental for robust and context-sensitive land-suitability evaluations.

Numerous studies have employed deterministic and probabilistic approaches in 
land-suitability analyses. While deterministic approaches often overlook uncertain-
ties in decision-making, the probabilistic approach provides more-comprehensive 
information about the accuracy and confidence level of analysis results  [33]. This 
approach has demonstrated effectiveness in enhancing the accuracy and reliability 
of the assessments by determining suitable agricultural land [23] and peatland [24] 
as well as identifying spatial allocations and potential land uses at sub-national lev-
els [20, 25]. Furthermore, data-driven and probabilistic approaches such as machine 
learning and supervised learning could enable the use of empirical data to train 
land-suitability-prediction models [26].

The data-driven probabilistic land-suitability approach mitigates the subjectiv-
ity that is associated with deterministic methods that involve subjective weighting 
and scoring by utilizing data patterns and probabilities that are obtained from ma-
chine learning. Furthermore, the use of the non-weighted overlay relevance matrix 
method reduces uncertainties in evaluation outcomes by providing a more objective 
framework for decision-making in spatial planning. The use of non-weighted over-
lay methods for evaluating spatial-plan and land-use alignment has been explored 
in previous studies. For instance, a similar approach was applied to assess land 
suitability within spatial-planning regulations in Sulawesi, Indonesia, by intersect-
ing zoning layers with suitability assessments [16]. A subsequent study integrated 
suitability analysis and spatial constraints using non-weighted overlays to evaluate 
land-allocation effectiveness on Java Island [25]. These studies have highlighted the 
utility of rule-based overlays in identifying spatial mismatches even though they 
often lack probabilistic confidence measures; these are addressed in the present 
study through their integration with machine-learning outputs. This approach is 
valuable for evaluating spatial planning from a conformance perspective, as it fa-
cilitates the identification of discrepancies between existing spatial plans and land 
suitability. The objective of this research is to evaluate the alignment of spatial plans 
with land-suitability models, thus ensuring that any spatial planning aligns with the 
land’s potential and characteristics; this promotes more-informed and sustainable 
decision-making.
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2.	 Material and Methods

2.1.	 Study Area

The study area that was selected in this research was Bogor Regency in West 
Java Province, Indonesia (Fig. 1).

Fig. 1. Map of study area

The selection of this location was based on several essential variables that were 
related to sustainable spatial planning, including the regional potential, economic 
development rate, and population growth. The region’s potential incorporates agri-
culture, industry, and smart-city development – all of which contribute to sustain-
able development and growth. Bogor Regency is endowed with significant natural 
resources, providing a strong foundation for the advancement of its agricultural sec-
tor. According to recent statistical data, agriculture ranks among the top-five eco-
nomic contributors – accounting for 5.19% of the region’s gross regional domestic 
product (GRDP) [34]. On the other hand, the industrial sector demonstrates a dom-
inant role, contributing 52.41% to the GRDP in 2023; this indicated its substantial 
potential to enhance regional revenue.
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Additionally, the region has demonstrated a proactive commitment to developing 
a smart city; this was reflected in the enactment of Regent Regulation No. 77 of 2020, 
which established the Smart City Masterplan of Bogor Regency. This initiative is stra-
tegically aligned with the regional spatial-planning framework, thereby ensuring that 
the integration of digital innovation and spatial governance becomes a cornerstone 
in promoting sustainable and technologically adaptive regional development [35].

This potential must be optimized through effective and balanced land use in 
sustainable spatial planning to serve diverse sectors [8, 36]. Implementing sustain-
able spatial planning in Bogor Regency may enhance land-use management for di-
verse requirements (including agricultural, housing, and industry) while ensuring 
a balance between development and environmental conservation.

2.2.	 Data and Methodology

The spatial unit that was used to represent the LULC location was a 5-arcsecond 
(≈154.15 m × 154.15 m at the equator) resolution grid that contained values for 11 pa-
rameters alongside the LULC class label. The LULC data was the main parameter 
and label of this research. This LULC data was reclassified into ten classes: forest, 
wetland agriculture, dryland agriculture, plantation, settlement, public facilities, 
pasture, inland fish farm, transportation, and protected area (Fig. 2).

Fig. 2. LULC of Bogor Regency (2022)
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The physical characteristics of the land were employed as parameters to de-
termine the land-suitability-probability values through machine learning. This 
study identified and selected 11  physical parameters following a rigorous eval-
uation using  Spearman correlation and multicollinearity tests; this was refined 
from an original set of 12  parameters. The values of the 11  parameters were 
normalized and  then incorporated into the grid using the maximum combined 
area (MCA) method.

For spatial consistency, the analysis used a standardized 5-arcsecond (5″ × 5″) 
grid (≈154.15 m at the equator) as the common spatial unit. All of the data sets – rang-
ing from climate, topography, soil, vegetation, hydrology, and land cover – were first 
reprojected to a common coordinate reference system (WGS 1984 UTM Zone 48S). 
Following this, each data set was resampled as needed to match the grid resolution. 
The maximum combined area (MCA) method was applied to ensure that each grid 
cell contained a single representative value [25]. For both the categorical and contin-
uous data, the value that was assigned to a grid cell corresponded to the value that 
occupied the largest proportion of the area within that cell. In other words, the most 
spatially dominant value was selected based on the pixel-level distribution inside 
the 5″ × 5″ grid, as illustrated in Figure 3, which depicts the gridded representation 
of the spatial plan in Bogor Regency.

Fig. 3. Spatial plan of Bogor Regency (2024–2044)
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For example, if a grid cell intersected three different soil types, the one that cov-
ered the largest area was assigned. For continuous parameters such as slope or NDVI, 
the pixel values were similarly grouped into predefined classes (e.g., slope ranges), 
and the class with the most significant coverage area was selected. This approach 
was implemented using the zonal analysis tools in GIS to produce a harmonized 
and reproducible data set, thus ensuring consistent input for machine-learning clas-
sification and evaluation of the spatial-plan alignment. This ensured that each grid 
cell consistently contained a complete and comparable set of 11 physical parame-
ters along with the corresponding LULC label. Employing this gridded spatial-data 
structure and MCA standardization ensured that a fair, systematic, and reproduc-
ible framework for spatial analysis, machine-learning classification, and subsequent 
overlay with the spatial-plan data was established.

This study categorized the physical parameters into four groups: topography, 
climate, soil and vegetation, and hydrology. Land-suitability modeling incorporat-
ed various physical parameters such as the elevation, slope, topographic position 
index (TPI), topographic wetness index (TWI), drainage/river density, precipitation, 
temperature, soil type, normalized difference vegetation index (NDVI), normalized 
difference water index (NDWI), and water supply (Table 1).

Table 1. Data information

No. Data Product – Source Year Scale/Resolution

1 Spatial-plan map of  
Bogor Regency (2024–2044) Bogor Regency government 2024 1:50,000  

(or 25 m)

2 LULC data 
(Bogor Regency)

Indonesia’s base map – 
Geospatial Information Agency (Indonesia) 2022 1:25,000  

(or 12.5 m)

3

Elevation, slope, 
topographic-position index, 
topographic-wetness index, 
drainage/river density

DEMNAS data-processing results –  
Geospatial Information Agency 
(Indonesia)

2018 5–11.75 m

4 Precipitation CHIRPS – Climate Hazards Center, 
UC Santa Barbara 2022 5 km

5 Temperature MODIS (Moderate-Resolution Imaging 
Spectroradiometer) – NASA and USGS 2022 1 km

6 Soil type Ministry of Agriculture (Indonesia) 2016 1:50,000

7 NDVI, NDWI Sentinel-2 – European Space Agency 2022 10 m

8 Water supply

Grid, ecosystem service index 
and water-availability data-processing 
results – Ministry of Public Works 
and Public Housing (Indonesia)

2016 5′ ≈ 154.15 m



a)	 b)	 c)	 d)

e)	 f)	 g)	 h)

i)	 j)	 k)

Fig. 4. Land’s physical parameters: a) elevation; b) slope; c) TPI; d) TWI; e) soil type; f) NDVI; g) NDWI; h) temperature; i) precipitation; j) river/drainage density; k) water supply
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This study employed a data-driven probabilistic approach that utilized ma-
chine learning for land-suitability assessment. The LULC data served as the training 
label  (Fig. 2), whereas the physical land parameters determined the probabilistic 
suitability value for each LULC class. The physical parameters served as features 
that separated the classes using SVM. The 11 parameters that were utilized in this 
study are illustrated in Figure 4 (on the interleaf); these physical parameters (exclud-
ing protected areas) were used to classify the suitability scores for 9 classes of LULC. 
The SVM algorithm combined with ECOC served as a classifier, and the probability 
values of the land suitability for the nine classes of LULC were determined. The 
land-suitability model results and LULC  area allocation were utilized to assess 
the alignment between the spatial plan and LULC.

Figure 5 presents the methodology that was employed in this research.

Fig. 5. Research methodology

This research addressed land-suitability assessment as a multiclass classifica-
tion problem and implemented a combination of  ECOC and  SVM to resolve the 
multiclass classification problem. SVM is a supervised machine-learning technique 
that was designed to solve binary classification tasks; it transforms input data into 
a high-dimensional feature space to identify the optimal separating hyperplane. 
This minimizes the training set errors and maximizes the margins between the dis-
tinct classes  [37–39]. ECOC transforms a multiclass classification issue into sever-
al binary-classification tasks, enhancing the fault tolerance and mitigating the bias 
and variance that was produced by the learning algorithm [40, 41]. Classification 
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using ECOC has the ability to correct errors in order to address any inaccuracies 
that were caused by the decoding process and to determine the probability of the 
prediction outcomes [12, 42]. This study used ECOC combined with SVM to obtain 
the land-suitability-prediction classes and probability values for each class of LULC 
(which was also applied to prior research) [32].

Although the SVM  outputs deterministic-class labels, this study employed 
a probabilistic adaptation by calibrating the decision values of each binary SVM clas-
sifier using Platt scaling. This post-processing technique fit a logistic function to the 
SVM decision values to estimate posterior probabilities. These calibrated probabili-
ties were then aggregated using the ECOC decoding scheme and normalized so that 
the probabilities for all of the LULC classes for each grid cell summed to one. This 
approach was conceptually similar to the implementation in the fitcecoc function in 
MATLAB [43] and has been validated in previous studies [25, 44, 45].

To enhance the model performance and ensure methodological transparency, 
this study evaluated multiple kernel functions for the SVM base learner, including 
linear, polynomial, and the radial basis function (RBF). Among these, the RBF ker-
nel consistently outperformed the others in terms of classification accuracy and 
generalization – particularly when modeling the non-linear relationships that were 
present in the 11 physical parameters. This finding aligned with prior research in 
land-use-suitability modeling such as Safitri et al.  [25] and Nurkholis et al.  [26], 
which similarly demonstrated the superior performance of the RBF kernel in spatial-
classification tasks.

To identify the optimal model configuration, we performed grid-search-based 
hyperparameter tuning over logarithmically spaced values for penalty parameter C 
(ranging from 0.1 to 100) and kernel coefficient γ (ranging from 0.001 to 1). The com-
bination that yielded the highest average classification accuracy was selected based 
on five-fold cross-validation; this cross-validation strategy was chosen to balance 
robust performance estimation with computational efficiency – particularly consid-
ering the iterative nature of hyperparameter optimization.

This study offered several scientific contributions to the field of spatial-plan-
ning evaluation. First, it introduced a data-driven probabilistic approach to land-
suitability modeling by employing a combination of a support vector machine (SVM) 
and error-correcting output codes (ECOCs), thus allowing for the generation of suit-
ability probabilities across multiple LULC classes. Unlike conventional determinis-
tic methods that rely on subjective weightings or scoring systems, the probabilistic 
framework provided more objective, reproducible, and uncertainty-aware results. 
Second, this research integrated 11 rigorously selected physical parameters (which 
were validated through multicollinearity and correlation tests) into a multiclass 
classification model that produced high-resolution predictions on a standardized 
5″ × 5″ grid system based on the Indonesian Multiscale Grid System (IMGS). This spa-
tial framework enhanced data interoperability and precision, thus making it highly 
relevant for national-scale land planning efforts. Third, the study introduced the 
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application of a non-weighted overlay relevance matrix, which operationalized spa-
tial-plan evaluation by quantifying the degree of alignment between the modeled 
land suitability and formal spatial-zoning designations. This matrix-based evalua-
tion enabled the systematic identification of non-compliant zones and provided spa-
tially explicit insights for policymakers. By combining machine learning with spatial-
planning standards and regulations, the approach bridged the gap between data 
science and urban planning, offering a scalable and transferable evaluation frame-
work that was applicable to other regions beyond the case study of Bogor Regency.

The decision to adopt ECOC-SVM over other classification models was based 
on its strong theoretical foundation and empirical performance in land-suitability-
classification tasks. While alternative machine-learning methods such as random 
forest, XGBoost, and multilayer perceptron  (MLP) neural networks were consid-
ered, ECOC-SVM consistently demonstrated superior performance during the pre-
liminary trials. Additionally, the ECOC-SVM  framework supported probability 
calibration through Platt scaling, thus enabling the generation of interpretable prob-
abilistic outputs – an essential requirement for spatial-decision support. In contrast, 
other models either lacked direct probability calibration (e.g., XGBoost) or required 
more-complex tuning procedures with limited added benefit given the data sets’ 
characteristics. The choice of ECOC-SVM thus reflected a balance among predictive 
accuracy, interpretability, and computational efficiency.

Evaluating the alignment of spatial plans and land-suitability models requires 
understanding the relationship between  LULC and the spatial-plan zone. The 
non-weighted overlay relevance matrix generates a relevance matrix that indicates 
the degree of alignment between the model and the spatial plan (including the dis-
tribution of their respective areas). The level of relevance is determined from an 
analysis of the correlation between the LULC class and the zoning within the spatial 
plan, utilizing technical documents on spatial planning, the Regulation of the Min-
ister of Agrarian Affairs and Spatial Planning/Head of the National Land Agency 
of Indonesia No. 14/2021, Standar Nasional Indonesia (Indonesian National Stan-
dard, SNI) 7645-1:2014 Klasifikasi Penutup Lahan (Land-Cover Classification), Ka-
talog Unsur Geografi Indonesia (Indonesian Geographic Element Catalogue), and 
previous research [46]. Mulya et al. [46] proposed a logical matrix to assess the align-
ment between LULC and spatial patterns; however, the classification was limited to 
five LULC classes and six spatial-pattern categories; this may have not adequately 
captured the complexity of real-world spatial dynamics.

To enhance the transparency and consistency in the assessment, the relevance 
levels (high, moderate, and low) were determined through a structured mapping 
that systematically associated each LULC class with the most aligned spatial zone. 
This mapping was based on the definitions and functional roles that were outlined 
in the Regulation of the Minister of Agrarian Affairs and Spatial Planning/Head of 
the National Land Agency No. 14/2021, Standar Nasional Indonesia 7645-1:2014 as 
well as the technical spatial-planning document of Bogor Regency. “High relevance” 
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was assigned when the LULC class directly conformed to the intended function of 
a spatial-planning zone, while “low relevance” indicated no functional or regulatory 
connection between the two. “Moderate relevance” captured instances of partial or 
conditional alignments – often reflecting planning regulations for mixed-use or mul-
tifunctional land use. For example, dry agriculture was classified as being moderate-
ly relevant within production forest zones due to regulatory allowances for limited 
agricultural activity in Bogor Regency. This structured mapping framework provid-
ed a normative basis for interpreting the relevance matrix that is presented in Table 3 
in Chapter 3.

The relevance matrix facilitated the analysis and assessment of the spatial plans, 
thus enabling evaluations based on the produced matrix. The results of the rele-
vance matrix between the LULC from the land-suitability model and the spatial plan 
are provided in Table 3 (serving as a basis for generating compliance and recommen-
dations for each LULC class).

3.	 Results

The land-suitability model that was produced in this study was comprised of an 
array of grids that contained 11 physical parameters as well as LULC information. 
Each grid of the suitability modeling results contained nine probability values of 
land suitability for each LULC class. This study showed that the probability value 
represented the suitability level of the LULC class. The ECOC algorithm was com-
bined with SVM to generate land-suitability-probability values. The suitability value 
for each LULC class was within a grid range from 0 to 1, with the totals of the prob-
ability values consistently equaling 1. A higher probability value in a grid indicated 
greater suitability for the corresponding LULC class within that grid. An example 
of the probability values that were associated with each land cover for Grids X, Y, 
and Z is shown in Table 2. Grids X, Y, and Z are examples of three adjacent grids; 
each grid had a probability value (0.00 to 1.00) for nine LULC classes.

Table 2 shows that Grid  X had the highest probability value for dryland ag-
ricultural land; this indicated that Grid  X had the highest suitability for dryland 
agricultural. For Grid Y, the highest suitability was forest, followed by plantation as 
the second-ranked suitability. Meanwhile, Grid Z was the most suitable to be used 
for settlements. With the probability value indicating the level of land suitability, the 
spatial plan could be evaluated based on the alignment between the spatial plan and 
the model with the highest level of land suitability.

To gain an overview of the overall model’s predictive confidence, Figure 6 il-
lustrates the distribution of the highest probability values across all of the grid cells. 
This graph captured the range and frequency of the model’s strongest suitability 
assignments, thus serving as an indicator of classification certainty throughout the 
study area. The land-suitability model indicated that the highest probability value 



Evaluating Spatial-Plan Consistency Through Probabilistic Machine-Learning...	 53

for the overall model was 0.9952, with an average of 0.8251 (as illustrated in Fig-
ure 6). It also revealed that the highest frequency of the values occurred within the 
probability range of 0.9–0.95. Additionally, a significant proportion of the grids ex-
hibited probability values that exceeded the average (as indicated by the red line 
in Figure 6), with 73,828 out of the 128,678 grids (57.37%).

Table 2. Probability value of each LULC class for each grid (example)

LULC class GRID X GRID Y GRID Z

1. Forest 0.065778 0.490896 0.005168

2. Wetland Agriculture 0.027885 0.041991 0.003565

3. Dryland Agriculture 0.786831 0.024668 0.054821

4. Plantation 0.094152 0.434313 0.092583

5. Settlement 0.018224 0.006534 0.426143

6. Public Facilities 0.000332 0.000122 0.000070

7. Pasture 0.006749 0.001457 0.417638

8. Inland Fish Farm 0.000008 0.000003 0.000002

9. Transportation 0.000039 0.000016 0.000009

Sum 1 1 1

Fig. 6. Distribution of highest probability values
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The land-suitability model with the highest probability value for each grid is 
illustrated in Figure 7. To enable a spatial comparison, the official spatial plan was 
classified into 12  functional zones and subsequently converted into a 5″ × 5″ grid 
spatial unit using the maximum combined area (MCA) method (Fig. 3). This method 
assigned the dominant land class to each cell based on the maximum overlap with 
the source pixels. This spatial framework was derived from the Indonesian Multi-
scale Grid System (IMGS), which provides standardized grid hierarchies that range 
from 1°30′ to 5″ cells and is fully aligned with the national topographic map-indexing 
system [47, 48]. The 5″ grid resolution has been widely used in environmental appli-
cations such as population distribution [49] and greenhouse-gas emission modeling, 
thus enabling spatial aggregation while preserving the fine-scale heterogeneity [48]. 
In comparison, global grid systems such as  GPWv4 adopt coarser resolutions 
(e.g., 30″, ca. 1 km), which may not capture land-use detail at the local governance 
level; thus, the 5″ grid is deemed to be more suitable for evaluating spatial-plan con-
sistency and LULC suitability within regency-scale-planning contexts.

Fig. 7. LULC-suitability model (highest probability value)

The alignment between the modeled suitability outcomes and the existing spatial 
plan was systematically assessed through the relevance matrix (as presented in Ta-
ble 3). This matrix represents a relevance matrix that show the area distribution of each 
LULC class across the various spatial-plan zones in hectares; the columns represent 
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the LULC classes, and the rows represent the spatial-planning-zone types. For in-
stance, the total forest cover area of 3128.4 ha (1) is within the horticultural zone (A). 
Table 3 provides an overview of the dominant LULC classes in each spatial-plan zone 
as well as those LULC classes that did not align with the existing spatial-plan zone. 
The matrix categorizes the relevance into three levels: 

	– High Relevance (indicated by green cells): this indicates complete alignments 
between the LULC and the spatial zone regarding the function and purpose. 
These areas are deemed to be suitable as they are and require no modifications.

	– Moderate Relevance (shown in yellow): this reflects a partial alignment be-
tween the LULC and the intended function of the spatial zone. Adjustments 
in this context may involve either maintaining or altering the existing LULC 
and are guided by specific conditions and evaluative criteria. Rather than 
prescribing a standardized response, this category allows for flexibility in 
decision-making, enabling land-use adjustments to be made based on the 
specific characteristics and contextual conditions of each case.

	– Low Relevance (represented by red cells): this reflects a function, purpose, or 
impact mismatch. Changes are recommended for the areas in this category, 
but any modifications must consider any constraints that are related to alter-
ing the land-use or spatial-zone functions.

Table 3. Relevance matrix showing area distributions [ha] of modeled LULC classes  
within official spatial-plan zone

LULC 1 2 3 4 5 6 7 8 9 10 Total 
Area 

A 3128.4 2272.0 6550.0 3239.4 488.5 – 40.1 – – 23.6 15,742.0
B 26,344.2 1118.6 7308.5 3226.2 203.0 – 696.3 – – 4.7 38,901.5
C – – – – – – – – – 44,992.6 44,992.6
D 1524.2 698.5 1937.2 2942.5 391.7 365.7 299.6 – – 21.2 8180.6
E – 533.3 231.3 28.3 66.1 – – 21.2 – – 880.3
F 11,781.4 2326.4 8449.1 6509.6 318.6 – 665.4 – – 47.2 30,097.7
G 4032.7 20,940.1 24,298.0 16,812.1 46,367.6 342.2 1387.8 7.1 129.8 158.1 114,475.5
H – 40.1 271.4 92.0 193.5 – 56.6 – 9.4 – 663.1
I 188.8 684.4 925.2 927.7 5912.7 127.5 684.5 – – 9.4 9460.3
J 193.5 23.6 94.4 59.0 26.0 – 932.1 – – 9.4 1338.0
K 47.2 42.5 287.9 103.8 160.5 – 21.2 – – – 663.1
L 3092.8 25,509.1 4155.7 4764.0 523.9 – 44.8 – – 153.4 38,243.7

Total 
Area 50,333.2 54,188.8 54,508.7 38,704.7 54,652 835.4 4828.5 28.3 139.2 45,419.7 303,638.4

Relevance: High Moderate Low

Explanations: 1 – forest; 2 – wetland agriculture; 3 – dryland agriculture; 4 – plantations; 5 – settlements; 
6 – public facilities; 7 – pasture; 8 – inland fish farm; 9 – transportation; 10 – protected area; A – horticul-
tural zone; B – production-forest zone; C – protected zone; D – tourism zone; E – inland-fish-farm zone; 
F – plantation zone; G – settlement zone; H – defense and security zone; I – industrial zone; J – mining 
zone; K – livestock zone; L – food-crop zone.
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4.	 Discussion

An initial assessment of the land-suitability model’s performance is essential 
before evaluating its alignment with the existing spatial plan. Subsequently, the 
alignment analysis between the spatial plan and the most suitable LULC  class 
(or the LULC class with the highest level of suitability) involves identifying the 
distribution of the LULC area that is contained within the spatial-plan zone. This 
approach enables a focused evaluation of how well the spatial plan incorporates 
ideal areas that align with the land-suitability criteria.

4.1.	 Land-Suitability-Model’s Performance

The land-suitability-model’s performance was assessed by utilizing perfor-
mance metrics; these were derived from the confusion matrix that is present-
ed in  Table 4. This research used the accuracy, precision, recall, specificity, and 
F1 score to assess the effectiveness of the land-suitability model. The model showed 
varying performances among the different LULC classes (Table 5). The evaluation 
results showed high performances for the wetland agriculture and settlements 
classes, with accuracy, precision, recall, and F1-score values all above  90%; this 
indicated the model’s effectiveness in classifying these two classes. However, the 
inland-fish-farm class had the lowest performance, with a very low accuracy and 
recall of 46.16% (despite having a precision of 100%). This indicated that the mod-
el could predict the inland-fish-farm class correctly but failed to identify many 
existing inland fish farms. The plantation class exhibited a relatively low accura-
cy (75.69%) and F1 score (79.94%), suggesting that the model struggled with con-
sistently identifying suitable plantation areas; this resulted in a significant number 
of false negatives. The model also faced challenges in distinguishing plantation 
areas from other classes such as dryland agriculture and forest; this was likely 
due to the similarities in their physical characteristics. These limitations indicated 
the model’s difficulty in balancing accurate identifications and minimizing mis-
classifications.

The overall accuracy, kappa statistic, and micro-metric (precision, recall, and 
F1 score) metrics were used to evaluate the overall performance of the model (Ta-
ble 6). The overall accuracy of the model reached 88.56%, thus indicating that the 
model had a high ability to accurately classify land suitability for the majority of 
the data. The kappa index of 0.873 showed a high agreement between the model 
predictions and the actual data; this showed that the model was very reliable in 
predicting the correct classes. Micro precision and recall indicated that 88.56% of 
the model’s predictions were correct with low error rates. The high precision and 
recall values led to a high F1 score, indicating that the model was effective and bal-
anced in predicting without compromising either metric. This balance reflected 
the model’s consistency in identifying the correct class while minimizing errors.
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Table 6. Performance metrics for model [%]

Overall Accuracy Kappa Statistic Micro Precision Micro Recall Micro F1 Score

88.56 0.873 88.56 88.56 88.56

The model that was developed in this study achieved a high overall accuracy 
of 88.56%, utilizing 11  carefully selected physical parameters and a hybrid error-
correcting output code  (ECOC) and support vector machine  (SVM) classification 
approach. In comparison, a previous study achieved 86.46% using ECOC-SVM with 
nine parameters [25], while it reported significantly lower performance (51.39% ac-
curacy) with the k-nearest neighbor (kNN) algorithm and only four parameters [50]. 
Another study implemented eight parameters with random forest and SVM, yield-
ing accuracies of 76.0% and 64.5%, respectively [38]. These findings suggested that 
both the classification of architecture and the number of input features substantially 
influenced the model’s performance. This supports the hypothesis that increasing 
the diversity and number of relevant physical parameters enhances model general-
izability and predictive performance when combined with a probabilistic classifica-
tion framework such as ECOC-SVM. Such an integration enables finer discrimination 
among LULC  classes – particularly in complex or heterogeneous environments.

A more nuanced analysis indicates a strong positive association between 
the number of well-selected input parameters and the classification accuracy. As the 
number of physical variables increases from 4 to 11, accuracy improves by more 
than  37%. This enhancement stems from the increased representational capacity 
of  the model, capturing diverse land characteristics such as topography, climate, 
hydrology, soil type, and vegetation indices. However, the accuracy gains tend to 
plateau beyond a certain point – especially when additional variables introduce 
redundancy or noise. Hence, 9-to-11 parameters appears to represent an optimal 
range that balances predictive power with model simplicity.

It is also important to highlight the role of ECOC in improving classification 
robustness by decomposing the multiclass land-suitability problem into multiple bi-
nary classification tasks. This modular structure mitigates common issues in imbal-
anced high-dimensional data sets such as class overlap or underrepresentation by 
improving decision-boundary clarity and error-correction capacity. When coupled 
with SVM’s strength in handling nonlinear separability, the ECOC-SVM framework 
demonstrates superior generalization across LULC classes.

Therefore, the term “leads to better accuracy” reflected not only a numerical 
improvement in performance metrics (such as the overall accuracy and the kappa 
statistic of 0.873) but also enhanced the model’s reliability and class-specific consis-
tency (e.g., high F1 scores) and reduced its misclassification errors. These attributes 
confirmed that integrating a well-structured feature set with an appropriate mul-
ticlass learning framework yields a robust and transferable land-suitability model 
that is suitable for spatial-planning evaluation.
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The findings aligned with recent advances in land-suitability and spatial-
planning research – especially that which applied integrated data-driven methods to 
support sustainable decision-making. For instance, one study examined maize suit-
ability in Poland under climate and water-stress scenarios using the analytic hierar-
chy process (AHP) and climate projections and emphasizing the need to adapt land-
use plans to emerging environmental challenges [51]. Similarly, a spatial-suitability 
framework was developed for renewable energy siting that incorporated both 
physical and legal constraints – an approach that was highly relevant to the present 
study’s evaluation of the consistency between the LULC and the spatial zoning [52].

Expanding upon this, the application of multilayer perceptron models has been 
shown to enhance spatial prioritization in energy-infrastructure planning [52]. This 
supported the hypothesis that artificial-intelligence-based approaches offer supe-
rior complexity management as compared to traditional multi-criteria decision-
making (MCDM) methods. Furthermore, the integration of policy layers into land-
use evaluations for Central Europe has reinforced the importance of combining 
biophysical information with policy-making tools – a strategy that was adopted in 
the present study by applying administrative zoning as a consistency constraint [53].

In non-European contexts, methodological advancements have been intro-
duced through the use of ensemble machine learning and decision-tree optimization 
for land-suitability mapping with Sentinel imagery [38]. Previous studies [38, 52, 53] 
have validated the use of hybrid data sources; accordingly, this study fuses mul-
tiple environmental predictors. Additionally, an artificial neural network-cellular 
automata  (ANN-CA) model combined with Internet of Things  (IoT) technologies 
has been proposed for territorial spatial planning, emphasizing the role of high-
resolution real-time data as a critical component in predicting spatial suitability, 
thereby complementing our use of probabilistic SVM for modeling spatial consis-
tency  [18]. These studies  [18,  38,  52,  53] have collectively supported the need for 
flexible, interpretable, and policy-sensitive ML models in land-allocation planning 
under multi-dimensional constraints.

4.2.	 Spatial-Plan Evaluation

The land-suitability model serves as a preliminary tool for identifying spatial-
plan zones that require further evaluation for revision. This study used the model 
to detect deviations in the existing spatial plan of Bogor Regency. This approach 
involved calculating the area of each modeled LULC class within the specific spatial 
zones. These distributions determined the total land area that was appropriately 
allocated for its designated purpose and the area of the non-compliant zones.

The spatial plan was categorized into 12 zones to assess the compliance and 
deviations based on the LULC-suitability model. As shown in Table 3, the distribu-
tion of the land area between the LULC and the spatial-plan zones was analyzed in 
order to identify discrepancies within the existing spatial plan. The results of the 
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consistency analysis between the spatial plan and the land suitability are detailed 
in Table 7 (highlighting the distribution of the compliant and non-compliant areas).

Table 7 outlines a set of recommendations that were derived from the evalua-
tion of land suitability in relation to the existing spatial-zoning regulations. These 
recommendations aim to enhance the alignment between spatial planning and the 
biophysical capacity of the land. While based on a technical land-suitability analysis, 
the implementations of these recommendations must also be grounded in relevant 
policy and regulatory frameworks at both the local and national levels.

In the context of Bogor Regency, several planning and environmental-policy 
documents provide a basis for supporting the optimization of sustainable LULCs. 
These documents include the Regional Spatial Plan of Bogor Regency 2024–2044 [54] 
as well as the strategic environmental assessment (SEA) for the Revision of the Spa-
tial Plan of Bogor Regency 2022–2043 [55]. Notably, the recommendation to preserve 
agricultural land as a means to support food security was grounded in Law No. 41 
of 2009 on the Protection of Sustainable Agricultural Land [56], which also serves as 
a legal foundation for the formulation of the Regional Spatial Plan of Bogor Regen-
cy. This law underscores the government’s commitment to conserving the existence 
and continuity of agricultural land use through the designations of sustainable food 
agricultural land areas in Bogor Regency.

Furthermore, the SEA document for Bogor Regency emphasizes the importance 
of restricting land conversion from non-built-up to built-up areas in order to preserve 
ecological functions and land-carrying capacity [55]. Accordingly, the recommenda-
tions that were outlined in Table 7 (such as retaining the agricultural land that is cur-
rently located within settlement zones and reclassifying them as food-crop zones) 
are not only ecologically relevant but also consistent with the regional-development 
priorities. These recommendations contribute to sustainable land-use planning and 
the promotion of long-term food security within the local-development framework.

Table 7. Evaluation results for alignment between spatial-plan zone  
and land-suitability model

LULC Class Compliant Non-Compliant Recommendation

1. Forest 52% within 
production forest 
zone

23% within 
plantation zone, 
and 8% within 
settlement zone

evaluation is required for areas that 
are classified as forest but are planned 
for conversions into plantation 
and settlement zones in spatial plan; 
recommendation is to maintain these areas 
as forest

2. �Wetland 
agriculture

47% within 
food-crop zone

39% within 
settlement zone

agricultural land within settlement zones 
should be repurposed for agricultural 
use and changed into food-crop zones 
to support food security
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3. �Dryland 
agriculture

12% within 
horticultural 
zone, 0.5% within 
livestock zone, 
and 8% within 
food-crop zone

45% within 
settlement zone 

dominance of settlement zone within 
dryland agriculture land indicates 
mismatch with spatial plan; agricultural 
land within settlement zone should 
be repurposed for agricultural use 
to support food security

4. Plantation 17% within 
plantation zone

43% within 
settlement zone

non-compliant allocation suggests need 
for zoning adjustments; recommendation 
is to repurpose plantations within 
settlement zone according to their land 
suitabilities as plantations

5. Settlement 85% within 
settlement zone

11% within 
industrial zone

alignment with spatial plan is high; 
however, addressing proximity between 
industrial zones and residential areas 
is crucial for mitigating potential 
conflicts and ensuring sustainable urban 
development

6. �Public 
facilities

44% within 
tourism zone, 
and 15% within 
industrial zone –

tourism and industrial zones 
are categorized as public infrastructure, 
which is relevant

41% within 
settlement zone

public facilities are relevant for supporting 
public infrastructure needs within 
settlement zone

7. Pasture 0.4% within 
livestock zone, 
0.8% within 
horticultural 
zone, and 0.9% 
within food-crop 
zone

29% within 
settlement zone

recommendation is to reallocate pastures 
within settlement zones according to their 
land suitabilities (such as for livestock 
or horticultural zones)

14% within 
production-forest 
zone, and 14% 
within plantation 
zone

pastures within production forest and 
plantation zones remain relevant, as they 
can serve as forms of crop diversification 
in these zones

8. �Inland fish 
farm

75% within 
inland-fish-farm 
zone 

25% within 
settlement zone

inland fish farms within settlement areas 
should be separated from settlement zone

9. �Transporta-
tion

93% within 
settlement zones 
and 7% within 
defense and 
security zone

–

relevant to need for access, connectivity, 
and defense/security facilities

Table 7. cont.
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The spatial plan of Bogor Regency allocates 114,475.5 ha (about 37.7% of the 
total area) for settlement zones. Conversely, the food-crop zones contain wetland 
agriculture only have 38,243.7 ha (12.6%), while the horticultural zones that include 
dryland agriculture are only allocated 15,742 ha (5%). The allocation of the settle-
ment zone in the spatial plan of Bogor Regency correctly designates 40.5% of the 
land for residential use (thus, aligning with its suitability for such use). Howev-
er, other land classes with high suitabilities for LULCs that are outside settlements 
are still significantly distributed within the settlement zones (Fig. 8). For instance, 
20,940 ha (18.3%) of the settlement zones should be allocated for wetland agricul-
ture, while  24,928 ha  (21.2%) is more suitable for dryland agriculture. Moreover, 
16,812 ha (14.7%) should be designated as plantations, and 4,032 ha (3.5%) should be 
designated as forest areas.

Fig. 8. LULC distribution within settlement zone from Bogor Regency spatial plan

Figure 9a illustrates the allocation discrepancies, revealing that regions allocat-
ed as settlement zones have a high probability of being classified as suitable for dry-
land agriculture according to the land-suitability model. Similar findings are shown 
in Figure 8b for wetland agriculture; this indicates a discrepancy when land that is 
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physically most suitable for agriculture is allocated for settlements and is, conse-
quently, not being utilized for its optimal use. Inefficient LULC use can lead to profit 
losses, slower economic growth, and environmental harm [57]. Land should be used 
based on its capacity, with settlements on unproductive lands and agriculture on 
productive/fertile areas. Misallocations such as converting farmlands for urban use 
risk flooding, pollution, and resource depletion, thus fueling climate change and 
environmental instability [54, 55].

The modeling results also showed that wetland agriculture covers 54,188.7 ha, 
of which 38.6% (20,940.1 ha) has been allocated for settlement zones. Similarly, dry-
land agriculture covers 54,508.17 ha, with 43.4%  (24,298 ha) being designated for 
settlement zones. This discrepancy suggests a need for land-use planning to more 
effectively assess the physical suitability for agricultural productivity, thus ensur-
ing that agricultural land is preserved as productive land. Law No. 41 of 2009 on 
Sustainable Food Agricultural Land Protection underscores the Indonesian Govern-
ment’s commitment to maintaining and enhancing sustainable agricultural land, 
allocating 38,195.4 ha in Bogor Regency as a sustainable food agricultural area. The 

Fig. 9. Discrepancies within settlement zone: a) dryland agriculture; b) wetland agriculture

a)	 b)
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spatial plan allocates 38,243.7 ha for food-crop zones and 15,742 ha for horticultur-
al zones; this reflects a focus on food-crop preservation, while horticultural zones 
remain vulnerable to conversions. Hence, specific measures are necessary to safe-
guard the remaining horticultural zones against misuse. Regulatory frameworks are 
critical in strengthening land-use monitoring and control  [59]. While Indonesia’s 
government already has spatial-planning monitoring and control regulations, lo-
cal governments face considerable challenges in their practical implementations. In 
this regard, participatory urban-planning monitoring offers a practical alternative to 
improve monitoring effectiveness [60].

The significant allocation of settlement zones (38% of the total land) indicates 
that Bogor Regency is focused on fulfilling housing demands to support the grow-
ing population. The distributions of agricultural zones (which cover only 18% of 
the total area) might lead to food-security challenges when food demand increas-
es due to population expansion. The transformation of agricultural lands into 
settlement zones can result in several implications; this includes reduced food-
crop yields, which may threaten long-term food security [60, 61]. Moreover, these 
changes are permanent, signifying that converted agricultural lands cannot revert 
to their original uses. The conversion of this productive land also entails several 
implications, including increased land prices and socio-economic effects such as 
increasing food costs, reliance on external food supplies, and a reduced standard 
of life [62].

The land distribution in the Bogor Regency spatial plan is advised to focus on 
those areas that are more functionally relevant and align with the land suitability. 
The prevalence of LULC-class distributions for settlements indicate that current spa-
tial planning mainly focuses on fulfilling settlement needs; this is potentially due 
to governmental policies or higher housing demands due to urbanization. To pro-
duce an improved spatial plan, balancing basic human needs with the assurance of 
environmental sustainability in spatial planning is crucial. Consequently, assessing 
the carrying capacity and land suitability will be essential in achieving optimal and 
sustainable land-use planning.

If unaddressed, these spatial inconsistencies may constrain the sustainability 
of Bogor Regency’s urban system by exacerbating land-use conflicts and undermin-
ing environmental resilience. Aligning spatial plans with ecological suitability can 
strengthen the environmental-carrying capacity, reduce the development fragmen-
tation, and improve the spatial coherence, thus directly contributing to sustainable 
urban-development goals. Achieving  SDG11 requires integrative approaches that 
address spatial, ecological, and social dimensions through evidence-based plan-
ning – particularly in Global South contexts [63]. Moreover, enhancing land-use suit-
ability can foster urban livability and public health – especially in peri-urban areas 
with high population pressures or limited infrastructures (in the context of Hong 
Kong)  [64]. These implications also align with the studies that have demonstrat-
ed the importance of coupling ecological resilience with adaptive urban land-use 
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models in order to support long-term sustainability transitions [65]. Taken together, 
our findings indicated that land-suitability modeling can serve not only as a techni-
cal tool for spatial-plan evaluation but also as a strategic instrument for advancing 
inclusive, resilient, and health-sensitive urban development.

In addition to the current evaluation of spatial-plan alignment, this model 
presents several opportunities for further development. Incorporating a temporal 
dimension such as projecting future land-use changes under demographic or cli-
mate scenarios would allow for more-anticipatory spatial planning. Furthermore, 
integrating socio-economic variables such as population density, infrastructure 
accessibility, and land value could provide a more nuanced picture of spatial suit-
ability that is aligned with on-the-ground conditions. Incorporating disaster-risk 
indicators like flood and landslide susceptibility would also enhance the model’s 
relevance for climate-resilience planning. Beyond analytical refinement, spatial-
optimization techniques (e.g., genetic algorithms, NSGA-II) could be employed to 
propose optimal land allocations that minimize fragmentation and better align with 
policy goals. The model could also benefit from ecological-footprint-based estima-
tions to assess land demand in a more environmentally grounded manner. Finally, 
participatory validation that involves local stakeholders and extends the model to 
regional or provincial scales would increase its practical utility, promote broad-
er applicability across jurisdictions, and support integrated spatial-governance 
frameworks.

5.	 Conclusion

The results of land-suitability modeling using 11 physical parameters to classify 
the probability value of suitability for 9 LULC classes using the ECOC-SVM meth-
od demonstrated excellent prediction performance, achieving an overall accuracy 
of 88.56%. This reliable land-suitability model showed its potential as a robust tool 
for evaluating the alignment between the LULC and the existing spatial plan. How-
ever, the evaluation in this study was limited to identifying those areas with discrep-
ancies. The evaluation findings indicated notable discrepancies between settlement 
zones and agricultural land. Specifically, 45% of dryland agriculture, 43% of planta-
tions, 39% of wetland agriculture, 29% of pastures, and 25% of inland fish farms are 
located within areas that are designated for settlement zones in the existing spatial 
plan. These findings highlighted the government’s prioritization of housing devel-
opment at the expense of addressing other critical needs such as food security. More-
over, the results suggested that the Bogor Regency’s government still needs to adopt 
a sustainable approach to spatial planning. Several aspects could enhance the assess-
ment to yield more practical recommendations for revising the spatial plan, such as 
identifying alternative locations to address these discrepancies. While the findings 
provided a basis for spatial-plan revisions, more-detailed recommendations could 
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be achieved by analyzing the specific needs of each LULC class. Furthermore, em-
ploying this land-suitability model as an evaluative instrument could be extended 
to any kind of land-use planning. This approach would strengthen the model’s ap-
plicability to broaden land-use policy and planning.

Comparable efforts in Europe have also demonstrated the utility of integrating 
machine learning and spatial regulations in land-suitability and spatial-planning 
evaluations. For example, climate-adaptive planning has been emphasized in 
maize-suitability modeling in Poland [66], while spatial-decision support has been 
applied to renewable-energy siting under legal constraints  [51]. The effectiveness 
of neural networks and AHP–GIS  methods in addressing spatial complexity and 
aligning with policy frameworks has also been highlighted [49, 50]. In the Middle 
East and Asia, recent studies have similarly shown that combining environmental 
data, remote sensing, and intelligent models such as artificial neural networks with 
cellular automata (ANN-CA) and SVM offers robust frameworks for evaluating land 
suitability across multiple spatial scales  [18,  24,  38]. The consistency of our find-
ings with these international efforts reinforces the global relevance of probabilistic 
ML-based approaches in modern spatial planning.

For future research, several directions can be proposed to enhance the analyt-
ical robustness and policy relevance of the model. First, incorporating disaster-risk 
variables (e.g., flood and landslide susceptibilities) and socioeconomic indicators 
(e.g., population pressure, infrastructure accessibility, or land value) may improve the 
contextual validity of the land-suitability predictions. Second, integrating ecological-
footprint-based land-demand estimations could support a more-environmentally-
grounded approach to spatial allocation. Third, applying spatial-optimization tech-
niques could help generate recommended land-use configurations that minimize 
fragmentation and better align with planning goals. Fourth, participatory valida-
tion  that involve local stakeholders and government agencies is recommended to 
ensure that the model’s outcomes are acceptable, feasible, and sensitive to on-the-
ground realities. Furthermore, incorporating temporal projections such as simulating 
land-use changes under demographic or policy scenarios would support forward-
looking spatial assessments. Coupled with optimization-based scenario generation, 
this would enable adaptive land-use alternatives that balance development, con-
servation, and equity. These improvements could enhance  the model’s utility for 
dynamic and policy-relevant planning. Finally, extending the model to a regional 
or provincial scale would allow for cross-boundary spatial-plan-consistency as-
sessments, thus enabling broader applications in integrated and sustainable spatial 
governance.

Funding

This research received no specific grant from any funding agency in the public, 
commercial, or not-for-profit sectors.



Evaluating Spatial-Plan Consistency Through Probabilistic Machine-Learning...	 67

CRediT Authors’ Contributions

D. S. H.: conceptualization, methodology, data curation, investigation, writing – 
original draft, writing – review & editing, visualization.

S. S.: conceptualization, methodology, data curation, investigation, writing – 
review & editing, supervision.

A. R.: conceptualization, methodology, supervision.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work that was re-
ported in this paper.

Data Availability

The public data in this article include:
	– land-use/land-cover data and DEMNAS available at https://tanahair.indone-

sia.go.id/;
	– rainfall data available at  https://data.chc.ucsb.edu/products/CHIRPS-2.0/;
	– MODIS data available at https://earthexplorer.usgs.gov;
	– Sentinel-2 imagery available at https://browser.dataspace.copernicus.eu.

Use of Generative AI and AI-Assisted Technologies

No generative AI or AI-assisted technologies were employed in the preparation 
of this manuscript.

Acknowledgement

The authors would like to thank the Bogor Regency government, the Geospatial 
Information Agency, the Ministry of Agriculture, and the Ministry of Public Works 
and Public Housing in Indonesia for providing the data for this research.

References

[1]	 Alexander E.R.: Evaluation in Planning: Evolution and Prospects. Routledge, 
London 2016.

[2]	 Carlos Loures L.: Introductory chapter: Land-use planning and land-use change as 
catalysts of sustainable development, [in:] Loures L.C. (ed.), Land Use – Assessing 
the Past, Envisioning the Future, IntechOpen, London 2019, pp. 3–12.

[3]	 Widiatmaka W., Ambarwulan W., Purwanto M.Y.J., Setiawan Y., Effendi H.: 
Daya dukung lingkungan berbasis kemampuan lahan di Tuban, Jawa Timur [Land 
capability based environmental carrying capacity in Tuban, East Java]. Jur-
nal Manusia dan Lingkungan, vol. 22(2), 2015, pp. 247–259. https://doi.org/​
10.22146/​jml.18749.

https://tanahair.indonesia.go.id/
https://tanahair.indonesia.go.id/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://earthexplorer.usgs.gov
https://browser.dataspace.copernicus.eu
https://doi.org/10.22146/jml.18749
https://doi.org/10.22146/jml.18749


68	 D.S. Hafidzah, S. Safitri, A. Riqqi

[4]	 Li L., Zhu G., Wu D., Xu H., Ma P., Liu J., Li Z., He Y., Li C., Wu P.: Land suit-
ability assessment for supporting transport planning based on carrying capacity and 
construction demand. PLoS One, vol. 16(2), 2021, pp. e0246374. https://doi.org/​
10.1371/journal.pone.0246374.

[5]	 Bunruamkaew K., Murayama Y.: Land use and natural resources planning 
for sustainable ecotourism using  GIS in Surat Thani, Thailand. Sustainability, 
vol. 4(3), 2012, pp. 412–429. https://doi.org/10.3390/su4030412.

[6]	 Kilić J., Jajac N., Rogulj K., Mastelić-Ivić S.: Assessing land fragmentation in 
planning sustainable urban renewal. Sustainability, vol. 11(9), 2019, pp. 2576. 
https://doi.org/10.3390/su11092576.

[7]	 Konyango C.O., Hayombe P.O., Owino F.O.: Effectiveness of planning tools 
in managing the spatial stability of peri-urban areas. Architectural Research, 
vol. 11(2), 2021, pp. 31–52. 

[8]	 Cao K.: Spatial Optimization for Sustainable Land Use Planning. Elsevier, Am-
sterdam 2018.

[9]	 FAO: Guidelines for Land-Use Planning. Food and Agriculture Organization of 
the United Nations, Rome 1993.

[10]	 Masoudi M., Centeri C., Jakab G., Nel L., Mojtahedi M.: GIS-based multi-cri-
teria and multi-objective evaluation for sustainable land-use planning (case study: 
Qaleh Ganj County, Iran) “Landuse Planning Using  MCE and Mola”. Inter-
national Journal of Environmental Research, vol. 15(3), 2021, pp. 457–474. 
https://doi.org/10.1007/s41742-021-00326-0.

[11]	 Medeiros E.: Spatial planning, territorial development, and territorial impact as-
sessment. Journal of Planning Literature, vol. 34(2), 2019, pp. 171–182. https://
doi.org/10.1177/0885412219831375.

[12]	 Masoudi M., Jokar P.: Development of a quantitative model in land use planning 
using GIS – A case study of Zarrin Dasht County, Iran. REGION, vol. 9(2), 2022, 
pp. 183–199. https://doi.org/10.18335/REGION.V9I2.448.

[13]	 Rustiadi E., Pravitasari A.E., Setiawan Y., Mulya S.P., Pribadi D.O., Tsutsu-
mida N.: Impact of continuous Jakarta megacity urban expansion on the formation 
of the Jakarta-Bandung conurbation over the rice farm regions. Cities, vol. 111, 
2021, 103000. https://doi.org/10.1016/j.cities.2020.103000.

[14]	 Syaban A.S.N., Appiah-Opoku S.: Unveiling the complexities of land use tran-
sition in Indonesia’s new capital city IKN Nusantara: A multidimensional conflict 
analysis. Land, vol. 13(5), 2024, 606. https://doi.org/10.3390/land13050606.

[15]	 Gandharum L., Hartono D.M., Karsidi A., Ahmad M.: Monitoring urban ex-
pansion and loss of agriculture on the North Coast of West Java Province, Indone-
sia, using Google Earth Engine and intensity analysis. Scientific World Journal, 
vol. 2022, 2022, 3123788. https://doi.org/10.1155/2022/3123788.

[16]	 Baja S., Neswati R., Arif S.: Land use and land suitability assessment within the context 
of spatial planning regulation. IOP Conference Series: Earth and Environmental 
Science, vol. 157, 2018, 012025. https://doi.org/10.1088/1755-1315/157/1/012025.

https://doi.org/10.1371/journal.pone.0246374
https://doi.org/10.1371/journal.pone.0246374
https://doi.org/10.3390/su4030412
https://doi.org/10.3390/su11092576
https://doi.org/10.1007/s41742-021-00326-0
https://doi.org/10.1177/0885412219831375
https://doi.org/10.1177/0885412219831375
https://doi.org/10.18335/REGION.V9I2.448
https://doi.org/10.1016/j.cities.2020.103000
https://doi.org/10.3390/land13050606
https://doi.org/10.1155/2022/3123788
https://doi.org/10.1088/1755-1315/157/1/012025


Evaluating Spatial-Plan Consistency Through Probabilistic Machine-Learning...	 69

[17]	 Kiessling N., Pütz M.: Assessing spatial planning outcomes – a novel framework 
based on conformance and governance capacities. Planning Theory & Practice, 
vol. 22(3), 2021, pp. 414–432. https://doi.org/10.1080/14649357.2021.1925951.

[18]	 Nie Z.: The suitability assessment for land territorial spatial planning based on 
ANN-CA model and the Internet of Things. Heliyon, vol. 10(10), 2024, e31237. 
https://doi.org/10.1016/j.heliyon.2024.e31237.

[19]	 Lasaiba M.A.: Evaluation of settlement land suitability based on remote sensing 
and geographical information systems in the city of Ambon. Spatial Wahana Ko-
munikasi dan Informasi Geografi, vol. 23(1), 2023, pp. 70–84. https://doi.org/​
10.21009/​spatial.231.006.

[20]	 Luo H., Huang B.: A probabilistic framework with the gradient-based method for 
multi-objective land use optimization. International Journal of Geographical 
Information Science, vol. 37(5), 2023, pp. 1128–1156. https://doi.org/10.1080/​
13658816.2023.2178001.

[21]	 Olding W.C.: Probabilistic Methods for Land Cover Change Detection. University 
of Tasmania, Hobart 2019.

[22]	 Din S.U., Mak H.W.L.: Retrieval of land-use/land cover change (LUCC) maps 
and urban expansion dynamics of Hyderabad, Pakistan via Landsat datasets and 
support vector machine framework. Remote Sensing, vol. 13(16), 2021, 3337. 
https://doi.org/10.3390/rs13163337.

[23]	 hi D., Yang X.: Support vector machines for land cover mapping from remote sensor 
imagery, [in:] Li J., Yang X. (eds.), Monitoring and Modeling of Global Changes: 
A Geomatics Perspective, Springer, Dordrecht, Netherlands 2015, pp. 265–279.

[24]	 Khaki B.D., Chatrenour M., Navidi M.N., Soleimani M., Mirzaei S., Pignat-
ti  S.: Land suitability assessment based on feature-level fusion of Sentinel-1 and 
Sentinel-2 imagery: A case study of the Honam region of Iran. IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, 
2024, pp. 14777–14789. https://doi.org/10.1109/JSTARS.2024.3437689.

[25]	 Safitri S., Wikantika K., Riqqi A., Deliar A., Sumarto I.: Spatial allocation 
based on physiological needs and land suitability using the combination of ecolog-
ical footprint and SVM (Case study: Java Island, Indonesia). ISPRS Internation-
al Journal of Geo-Information, vol. 10(4), 2021, 259. https://doi.org/10.3390/
ijgi10040259.

[26]	 Nurkholis A., Styawati, Suhartanto A.: Firefly algorithm for SVM multi-class op-
timization on soybean land suitability analysis. International Journal of Informat-
ics and Visualization, vol. 8(2), 2024, pp. 592–597. https://doi.org/10.62527/
joiv.8.2.1860.

[27]	 Ganesan M., Andavar S., Raj R.S.P.: Prediction of land suitability for crop cultiva-
tion using classification techniques. Brazilian Archives of Biology and Technol-
ogy, vol. 64, 2021, e21200483. https://doi.org/10.1590/1678-4324-2021200483.

https://doi.org/10.1080/14649357.2021.1925951
https://doi.org/10.1016/j.heliyon.2024.e31237
https://doi.org/10.21009/spatial.231.006
https://doi.org/10.21009/spatial.231.006
https://doi.org/10.1080/13658816.2023.2178001
https://doi.org/10.1080/13658816.2023.2178001
https://doi.org/10.3390/rs13163337
https://doi.org/10.1109/JSTARS.2024.3437689
https://doi.org/10.3390/ijgi10040259
https://doi.org/10.3390/ijgi10040259
https://doi.org/10.62527/joiv.8.2.1860
https://doi.org/10.62527/joiv.8.2.1860
https://doi.org/10.1590/1678-4324-2021200483


70	 D.S. Hafidzah, S. Safitri, A. Riqqi

[28]	 Ganati B.A., Sitote T.M.: Predicting land suitability for wheat and barley crops 
using machine learning techniques. Scientific Reports, vol. 15, 2025, 15879. 
https://doi.org/10.1038/s41598-025-99070-0.

[29]	 Apriyeni B.A.R., Mubarokah N., Ramli M.: Topographic position indeks ana-
lisys untuk interpretasi landform Pulau Lombok berdasarkan digital elevation mod-
el  (DEM). Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi, vol. 6(2), 
2022, pp. 264–273. https://doi.org/10.29408/geodika.v6i2.7031.

[30]	 Nguyen T.T., Verdoodt A., Van Y T., Delbecque N., Tran T.C., Van Ranst E.: 
Design of a GIS and multi-criteria based land evaluation procedure for sustainable 
land-use planning at the regional level. Agriculture, Ecosystems &  Environ-
ment, vol. 200, 2015, pp. 1–11. https://doi.org/10.1016/j.agee.2014.10.015.

[31]	 Benke K.K., Pelizaro C.: A spatial-statistical approach to the visualisation of un-
certainty in land suitability analysis. Journal of Spatial Science, vol. 55(2), 2010, 
pp. 257–272. https://doi.org/10.1080/14498596.2010.521975.

[32]	 Nyeko M.: GIS and multi-criteria decision analysis for land use resource plan-
ning. Journal of Geographic Information System, vol. 4(4), 2012, pp. 341–348. 
https://doi.org/10.4236/jgis.2012.44039.

[33]	 Carsjens G.J., van der Knaap W.: Strategic land-use allocation: Dealing with spatial 
relationships and fragmentation of agriculture. Landscape and Urban Planning, 
vol. 58(2–4), 2002, pp. 171–179. https://doi.org/10.1016/S0169-2046(01)00219-5.

[34]	 BPS-Statistics Indonesia Bogor Regency: Bogor Regency in Figures 2024. 2024.
[35]	 Utami N.P.: Kemajuan perkembangan smart city di Kabupaten Bogor dalam kon-

teks perencanaan tata ruang wilayah [Progress of smart city development in 
Bogor Regency within the context of regional spatial planning]. JIM: Jurnal 
Ilmiah Mahasiswa Pendidikan Sejarah, vol. 8(2), 2023, pp. 570–579.

[36]	 van Lier H.N.: Sustainable Land Use Planning. Elsevier, New York 1993.
[37]	 Cortes C., Vapnik V.: Support-vector networks. Machine Learning, vol. 20(3), 

1995, pp. 273–297. https://doi.org/10.1007/BF00994018.
[38]	 Taghizadeh-Mehrjardi R., Nabiollahi K., Rasoli L., Kerry R., Scholten T.: Land 

suitability assessment and agricultural production sustainability using machine 
learning models. Agronomy, vol. 10(4), 2020, 573. https://doi.org/10.3390/
agronomy10040573.

[39]	 Yang J., Wu Z., Peng K., Okolo P.N., Zhang W., Zhao H., Sun J.: Parame-
ter selection of Gaussian kernel SVM based on local density of training set. In-
verse  Problems in Science and Engineering, vol. 29(4), 2021, pp. 536–548. 
https://doi.org/​10.1080/17415977.2020.1797716.

[40]	 Sivagami K.P., Jayanthi S.K., Aranganayagi S.: Monitoring land cover of Google 
Web Service images through ECOC and ANFIS classifiers. International Journal of 
Computer Science and Engineering, vol. 5(8), 2017, pp. 9–16. https://doi.org/​
10.26438/ijcse/v5i8.916.

[41]	 Yin A.R., Xie X., Kuang J.M.: Application of Hadamard  ECOC in multi-class 
problems based on SVM, [in:] 6th Interspeech 2005 and 9th European Conference 

https://doi.org/10.1038/s41598-025-99070-0
https://doi.org/10.29408/geodika.v6i2.7031
https://doi.org/10.1016/j.agee.2014.10.015
https://doi.org/10.1080/14498596.2010.521975
https://doi.org/10.4236/jgis.2012.44039
https://doi.org/10.1016/S0169-2046(01)00219-5
https://doi.org/10.1007/BF00994018
https://doi.org/10.3390/agronomy10040573
https://doi.org/10.3390/agronomy10040573
https://doi.org/10.1080/17415977.2020.1797716
https://doi.org/10.26438/ijcse/v5i8.916
https://doi.org/10.26438/ijcse/v5i8.916


Evaluating Spatial-Plan Consistency Through Probabilistic Machine-Learning...	 71

on Speech Communication and Technology (EUROSPEECH): 4–8 September 2005, 
Lisboa, Portugal, ISCA, Lisbon 2005, pp. 3125–3128. https://doi.org/10.21437/
Interspeech.2005-672.

[42]	 Kim J.L., Kim M.: Error-correcting output codes for multi-class classification based 
on Hadamard matrices and a CNN model. Procedia Computer Science, vol. 222, 
2023, pp. 262–271. https://doi.org/10.1016/j.procs.2023.08.163.

[43]	 MathWorks: fitecoc: Fit multiclass models for support vector machines or other classi-
fiers. https://www.mathworks.com/help/stats/fitcecoc.html [access: 4.12.2024].

[44]	 Wang Z., Xu W., Hu J., Guo J.: A multiclass SVM method via probabilistic error-
correcting output codes, [in:] 2010 International Conference on Internet Technology 
and Applications, Wuhan, China, IEEE, 2010, pp. 1–4. https://doi.org/​10.1109/​
ITAPP.2010.5566126.

[45]	 Zheng G., Qian Z., Yang Q., Wei C., Xie L., Zhu Y., Li Y.: The combination ap-
proach of SVM and ECOC for powerful identification and classification of transcrip-
tion factor. BMC Bioinformatics, vol. 9, 2008, 282. https://doi.org/10.1186/1471-
2105-9-282.

[46]	 Mulya S.P., Munif M., Pravitasari A.E., Rustiadi E., Widiatmaka: Land use 
and spatial planning in the border area of Bogor Regency and Bogor City, West Java 
Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 
vol. 950, 2022, 012099. https://doi.org/10.1088/1755-1315/950/1/012099.

[47]	 Riqqi A., Fitria A., Prijatna K., Pratama R.E., Mahmudy J.: Indonesian multi-
scale grid system for environmental data, [in:] 10th Annual Asian Conference and 
Exhibition on Geospatial Information Technology and Application, Intermap, Ja-
karta 2011, pp. 1–7.

[48]	 Riqqi A., Radjawane I.M.: Indonesian muti-scale grid system for environmental and 
oceanic data, [in:] Tanaka T., Levy H., Gower J., Nuarsa I.W., Asriningrum W., 
Harsanugraha W.K. (eds.), 12th Biennial Conference of Pan Ocean Remote Sens-
ing Conference (PORSEC 2014), PORSEC, Bali, Indonesia 2014, pp. 429–434.

[49]	 Riqqi A., Agustin S., Muzayyana M., Retnowati D.A., Nafishoh Q., Kuscah-
yadi F.: Densitas populasi dalam sistem grid skala ragam [Population density in 
a multi-scale grid system]. Prosiding Seminar Nasional Geomatika, vol. 3, 
2019, 247.

[50]	 Taradini J.: Pemodelan alokasi spasial penutup/penggunaan lahan berdasarkan 
daya dukung lingkungan hidup sebagai skenario perencanaan (wilayah studi: Pulau 
Jawa, Indonesia) [Modeling spatial allocation of land cover/use based on envi-
ronmental carrying capacity as a planning scenario (study area: Java Island, 
Indonesia]. Institut Teknologi Bandung, Bandung 2018.

[51]	 Wiśniewski Ł., Biczkowski M., Rudnicki R.: Natural potential versus rationality 
of allocation of Common Agriculture Policy funds dedicated for supporting organic 
farming development – assessment of spatial suitability: The case of Poland. Eco-
logical Indicators, vol. 130, 2021, 108039. https://doi.org/10.1016/​j.ecolind.​
2021.108039.

https://doi.org/10.21437/Interspeech.2005-672
https://doi.org/10.21437/Interspeech.2005-672
https://doi.org/10.1016/j.procs.2023.08.163
https://www.mathworks.com/help/stats/fitcecoc.html
https://doi.org/10.1109/ITAPP.2010.5566126
https://doi.org/10.1109/ITAPP.2010.5566126
https://doi.org/10.1186/1471-2105-9-282
https://doi.org/10.1186/1471-2105-9-282
https://doi.org/10.1088/1755-1315/950/1/012099
https://doi.org/10.1016/j.ecolind.2021.108039
https://doi.org/10.1016/j.ecolind.2021.108039


72	 D.S. Hafidzah, S. Safitri, A. Riqqi

[52]	 Amsharuk A., Yüksel K., Madlener R.: Machine learning-driven site selection 
for wind farms in Poland. SSRN, 2025. https://doi.org/10.2139/ssrn.5255229.

[53]	 Dornik A., Cheţan M.A., Crişan T.E., Heciko R., Gora A., Drăguţ L., Pana-
gos P.: Geospatial evaluation of the agricultural suitability and land use compatibil-
ity in Europe’s temperate continental climate region. International Soil and Water 
Conservation Research, vol. 12(4), 2024, pp. 908–919. https://doi.org/10.1016/​
j.iswcr.​2024.01.002.

[54]	 Bogor Regency Government: Regional Regulation of Bogor Regency Number 1 
of 2024 concerning the Spatial Plan of Bogor Regency 2024–2044, Indonesia, 2024. 
https://peraturan.bpk.go.id/Details/300691/perda-kab-bogor-no-1-tahun-2024 
[access: 4.12.2024].

[55]	 Bogor Regency Government: Final Report: Strategic Environmental Assess-
ment (SEA) for the Revision of the Spatial Plan of Bogor Regency 2022–2043, Bo-
gor Regency, 2022. https://ppid.bogorkab.go.id/index.php?d=30056&page_​
title=​Kajian_Lingkungn_Hidup_Strategis_(KLHS)_Revisi_Rencana_Tata_
Ruang_Wilayah_(RTRW) [access: 4.12.2024].

[56]	 Government of Indonesia: Law Number 41 of  2009 concerning the Protection 
of Sustainable Food Agricultural Land, Indonesia, 2009. https://peraturan.bpk.
go.id/Details/38786/uu-no-41-tahun-2009 [access: 4.12.2024].

[57]	 Heydari M., Honarbakhsh A., Pajoohesh M., Zangiabadi M.: Land use opti-
mization using the fuzzy mathematical-spatial approach: A case study of Chelgerd 
Watershed, Iran. Journal of Environmental Engineering and Landscape Man-
agement, vol. 26(2), 2018, pp. 75–87. https://doi.org/10.3846/16486897.2017.1
350688.

[58]	 Kılınç M.Y.: Misuse of the land for industry and urbanization resulting environ-
mental problems. Artium, vol. 1(1), 2013, pp. 82–85.

[59]	 Indrajit A., Van Loenen B., Van Oosterom P.: Assessing spatial information 
themes in the spatial information infrastructure for participatory urban planning 
monitoring: Indonesian cities. ISPRS International Journal of Geo-Information, 
vol. 8(7), 2019, 305. https://doi.org/10.3390/ijgi8070305.

[60]	 Anwar M.M., Breuste J.H., Ahmad A., Aziz A., Aldosari A.A.: Quantifying the 
impacts of urbanization on urban agriculture and food security in the megacity La-
hore, Pakistan. Sustainability, vol. 15(16), 2023, 12143. https://doi.org/10.3390/
su151612143.

[61]	 Suryadi W., Prasetyawati E.: Excessive use of death penalty as stoppage tool 
for terrorism: Wrongful death executions in Pakistan. Journal of Law, Poli-
cy and  Globalization, vol. 85, 2019, pp. 171–177. https://doi.org/10.7176/
JLPG/85-19.

[62]	 Niang R.M.: Urbanisation and its effects on agricultural lands, economic and social 
impact: A case study of Juaben Municipality. 2019. https://ir.knust.edu.gh/items/
ad464ae8-4fc9-43b9-a2a3-6f0851bf5412 [access: 16.12. 2024].

https://doi.org/10.2139/ssrn.5255229
https://doi.org/10.1016/j.iswcr.2024.01.002
https://doi.org/10.1016/j.iswcr.2024.01.002
https://peraturan.bpk.go.id/Details/300691/perda-kab-bogor-no-1-tahun-2024
https://ppid.bogorkab.go.id/index.php?d=30056&page_title=Kajian_Lingkungn_Hidup_Strategis_(KLHS)_Revisi_Rencana_Tata_Ruang_Wilayah_(RTRW)
https://ppid.bogorkab.go.id/index.php?d=30056&page_title=Kajian_Lingkungn_Hidup_Strategis_(KLHS)_Revisi_Rencana_Tata_Ruang_Wilayah_(RTRW)
https://ppid.bogorkab.go.id/index.php?d=30056&page_title=Kajian_Lingkungn_Hidup_Strategis_(KLHS)_Revisi_Rencana_Tata_Ruang_Wilayah_(RTRW)
https://peraturan.bpk.go.id/Details/38786/uu-no-41-tahun-2009
https://peraturan.bpk.go.id/Details/38786/uu-no-41-tahun-2009
https://doi.org/10.3846/16486897.2017.1350688
https://doi.org/10.3846/16486897.2017.1350688
https://doi.org/10.3390/ijgi8070305
https://doi.org/10.3390/su151612143
https://doi.org/10.3390/su151612143
https://doi.org/10.7176/JLPG/85-19
https://doi.org/10.7176/JLPG/85-19
https://ir.knust.edu.gh/items/ad464ae8-4fc9-43b9-a2a3-6f0851bf5412
https://ir.knust.edu.gh/items/ad464ae8-4fc9-43b9-a2a3-6f0851bf5412


Evaluating Spatial-Plan Consistency Through Probabilistic Machine-Learning...	 73

[63]	 Almulhim A.I., Sharifi A., Aina Y.A., Ahmad S., Mora L., Filho W.L., Abu-
bakar I.R.: Charting sustainable urban development through a systematic review 
of SDG11 research. Nature Cities, vol. 1, 2024, pp. 677–685. https://doi.org/​
10.1038/s44284-024-00117-6.

[64]	 Chi Y.L., Mak H.W.L.: From comparative and statistical assessments of liveability 
and health conditions of districts in Hong Kong towards future city development. 
Sustainability, vol. 13(16), 2021, 8781. https://doi.org/10.3390/su13168781.

[65]	 Wang Z., Lin L., Zhang B., Xu H., Xue J., Fu Y., Zeng Y., Li F.: Sustainable 
urban development based on an adaptive cycle model: A coupled social and ecolog-
ical land use development model. Ecological Indicators, vol. 154, 2023, 110666. 
https://doi.org/10.1016/j.ecolind.2023.110666.

[66]	 Król-Badziak A., Kozyra J., Rozakis S.: Assessment of suitability area for maize 
production in Poland related to the climate change and water stress. Sustainability, 
vol. 16(2), 2024, 852. https://doi.org/10.3390/su16020852.

https://doi.org/10.1038/s44284-024-00117-6
https://doi.org/10.1038/s44284-024-00117-6
https://doi.org/10.3390/su13168781
https://doi.org/10.1016/j.ecolind.2023.110666
https://doi.org/10.3390/su16020852

