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Abstract:	 Precise and timely land-cover identification plays an important role in effec-
tive environmental monitoring and land management. This study compares 
the performance of five machine-learning classifiers – support vector ma-
chine (SVM), decision tree (DT), normal Bayes (NB), random forest (RF), and 
k-nearest neighbor  (k-NN) – in the land-cover mapping of the Agro Noceri-
no Sarnese area (Southern Italy) using high-resolution SPOT 7 pan-sharpened 
multispectral images with a pixel size of 1.5 m × 1.5 m. The data set consisted of 
blue, green, red, and near-infrared (NIR) bands and was processed with Orfeo 
ToolBox (OTB) software. Two data sets were analyzed: DS-3B (which included 
only the visible bands [blue, green, and red]), and DS-4B (which also includ-
ed the NIR band). A comparison of the classifiers’ performances across various 
land-cover classes was conducted in order to assess their respective classifi-
cation accuracy. The results showed that SVM and k-NN achieved the high-
est overall accuracy levels (93% and 92%, respectively) using only the visible 
bands, whereas the decision tree classifier performed best when the NIR band 
was included. Random forest achieved excellent accuracy in vegetation class-
es (88–99%) but struggled with misclassifications in bare soil and man-made 
classes such as buildings and roads. These results emphasized the significant 
impact of data set characteristics on classifier performance as well as the im-
portance of band selection and pan-sharpening techniques in high-resolution 
land-cover mapping.
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1.	 Introduction

Remote sensing allows for the acquisition of qualitative and quantitative infor-
mation from an object, area, or phenomenon through the analysis of data that is ac-
quired from a remote device; i.e., a sensor that is placed onboard a satellite that is not 
in direct contact with an object, area, or phenomenon that is being investigated [1]. The 
classification of high-resolution satellite images is a topic of fundamental importance 
for identifying the various land-cover areas on the Earth’s surface; this is useful for 
monitoring cultivated fields in agriculture as well as environmental or hydrological 
resources [2]. To obtain information on land cover, a classification of remotely sensed 
data is carried out; areas or pixels with similar spectral characteristics are assigned 
to classes or categories – each representing a different type of land-cover feature.

To effectively monitor and analyze land cover, various remote-sensing tools 
and data sets are employed – each offering unique strengths and limitations de-
pending on the spatial resolution, coverage, and temporal dynamics. The CORINE 
land-cover data set (CLC) provides a broad land-cover classification for Europe at 
a 100-meter resolution [3]; it is suitable for large-scale mapping, but it has limita-
tions in capturing fine-scale details – particularly in mixed urban-natural areas [4]. 
ESA’s Dynamic World data set offers global land-cover data at 10- to 30-meter res-
olutions with real-time updates [5]; however, its accuracy can be influenced by sea-
sonal variability and topographical factors [6].

Among the various land-cover products that are provided by international 
agencies, there is a significant lack of data sets that have been derived from high-
resolution imagery. While existing data sets offer valuable information at coarser 
spatial resolutions, they often fail to capture the fine-scale variations in land cover 
that are essential for accurate environmental monitoring and decision-making [7]. 
High-resolution remote-sensing data could greatly enhance the precision of 
land-cover classification and provide more-detailed insights into local-scale changes 
that are often obscured in lower-resolution data sets.

Working with high-resolution or very-high-resolution  (VHR) images (which 
feature sub-meter level detail) presents heightened challenges for classification 
tasks; these difficulties are due to the desired high-resolution output and the level 
of uncertainty in the predictions [8]. Therefore, the choice of an algorithm to use is 
essential for identifying land use-land cover (LULC) [9] and the separation thresh-
olds (in terms of the spectral response) between the various classes. Machine learn-
ing (ML) offers the potential for the effective and efficient classification of remotely 
sensed imagery, enables the handling of high-dimensional data, and provides the 
ability to map classes with very complex characteristics [10].

Currently, ML is constantly evolving; it uses designed calculation algorithms 
to emulate human intelligence without explicit programming [11], which allows it 
to develop practical software for computer vision  [12], self-driving cars  [13], and 
other applications within the science and engineering fields (this also includes 
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geoscience [14] and remote sensing [10]). ML is a subset of artificial intelligence that 
enables computers to learn from data and experiences without being explicitly pro-
grammed; however, the classification methods can be divided into supervised and 
unsupervised learning.

Supervised learning is based on providing a computer system with training 
and test sets of labeled data, which allow for the building of a model that is capable 
of identifying unlabeled data [15]. With this model, the analyst acts as a guide and 
teaches the algorithm which results to generate. In supervised ML, the algorithm 
learns from a data set that has been previously labeled and provides a predefined 
output. In this case, the identification of sample areas (training sites) that are re-
lated to a specific land-cover area for training algorithms is essential for classify-
ing satellite images with supervised ML. The algorithms that fall within supervised 
machine learning are several [16]; among others, these include support vector ma-
chine (SVM) [17], neural nets [18], logistic regression [19], normal Bayes (NB) [20], 
random forest (RF) [21], decision tree (DT) [22], and k-nearest neighbor (k-NN) [23].

However, when the data is all unlabeled (there are no training sites), then the 
learning process is labeled “unsupervised.” In other terms, information that is neither 
classified nor labeled allows an algorithm to classify data autonomously. The purpose 
of algorithms is to group unsorted information according to its similarities, patterns, 
and differences without any prior training with the data [24]. The most-used algo-
rithms in unsupervised machine learning are hierarchical clustering [25], k-means [26] 
and isodata [27]. The aim of this study is to perform land-cover classification using 
high-spatial-resolution  (1.5 m) SPOT  7 imagery and ML  algorithms. The SPOT  7 
satellite enables detailed land-cover classifications – particularly in complex areas.

The classifications were carried out using supervised ML algorithms, includ-
ing SVM, DT, NB, RF, and k-NN. Through the comparison of ML-based classification 
techniques, our research provides a novel contribution by examining a unique area that 
is characterized by complex urban-rural landscapes. Such landscapes present challeng-
es that have yet to be fully addressed in the literature, making these regions particularly 
suitable for testing and refining classification methods in such complex environments. 
The applications were carried out using Quantum GIS (QGIS) software (ver. 3.28) and 
Orfeo ToolBox (OTB). The paper is structured in the following way: in Section 2, the 
study area and satellite data are presented, as are as the applied methods; in Section 3, 
the results are reported and discussed; and in Section 4, our conclusions are stated.

2.	 Data and Methods

2.1.	 Study Area and Data Set

The study area that was selected for this article is a portion of the municipality 
of Sarno, which is located in the province of Salerno in Campania (Italy); it covers an 
area of 6 km × 4 km (Fig. 1).
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Fig. 1. Geolocalization of Sarno (red rectangle) in equirectangular projection  
and WGS 84 ellipsoidal coordinates

Fig. 2. True-color RGB composite of SPOT 7 imagery that was acquired on June 7, 2019, 
at UTM-WGS 84 plane coordinates
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Geographically, Sarno is part of the Agro Nocerino Sarnese (the southern 
part of the Campanian Plain); it develops on the slopes of Mount Saro and the banks 
of the Sarno River. Sarno’s economy is essentially based on agricultural produc-
tion and canning; therefore, the territory is characterized by extensive vegetation 
and many agricultural and food infrastructures. In terms of land cover, the Sarno 
area is primary characterized by crops (herbaceous and tree), forest vegetation, 
buildings, and greenhouses. The study area extends to the following UTM-WGS84 
(Zone 33 N) plane coordinates: E1 = 474,000 m; E2 = 480,000 m; N1 = 4,512,000 m; 
and N2 = 4,516,000 m. Figure 2 shows the true-color RGB composite of the SPOT 7 
imagery that was used for this study.

SPOT 7 (Satellite pour l’Observation de la Terre) was launched on June 1, 2014, 
and ceased operations on March 17, 2023. SPOT  7 was designed to provide high-res-
olution wide-area optical imagery to support the knowledge and management of 
Earth’s resources, detect and forecast the phenomena that involved climatology and 
oceanography, and monitor human activities and natural phenomena [28].

The SPOT 7 data set offered several key advantages, including its high geomet-
ric resolution and the availability of both panchromatic and multispectral bands, 
thus enabling the application of pan-sharpening techniques. Additionally, the data 
set’s high temporal resolution (with scene-acquisition intervals that ranged from 
one to three days) facilitated the capture of images with minimal cloud cover, thus 
enhancing the data quality and reliability. However, its high-resolution images 
typically covered smaller spatial extents as compared to its medium-resolution im-
ages; with a geometric resolution of 30 m, for instance, the swath of a Landsat 9 
image spans  185 km  [29]. This is significantly larger than the 60 km swath of 
a SPOT 7 image [28].

The SPOT 7 data set was comprised of four multispectral bands (blue, green, 
red, and near infrared) with a resolution of 6 m and one panchromatic (PAN) band 
with a resolution of 1.5 m [28] (as reported in Table 1). The satellite imagery was pan-
sharpened in order to achieve the same geometrical resolution in the multispectral 
bands as could be found in the panchromatic band [30, 31]; it was also orthorecti-
fied. Thanks to the pan-sharpening technique, all of the multispectral band data had 
a geometric resolution that was equal to 1.5 m.

Table 1. Main characteristics of SPOT 7 images

Band Wavelength [μm] Resolution [m]

Band 1 – Blue 0.45–0.52 6.0

Band 2 – Green 0.53–0.59 6.0

Band 3 – Red 0.62–0.69 6.0

Band 4 – Near Infrared 0.76–0.89 6.0

PAN 0.45–0.75 1.5
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2.2.	 Classification Methods

The classification of satellite images is a crucial process in remote sensing; this 
enables the extraction of valuable information from Earth observation data. The fol-
lowing workflow (Fig. 3) outlines the steps that are necessary for classifying satellite 
imagery.

Fig. 3. Workflow of adopted approach for satellite image classification –  
detailing steps from data acquisition through accuracy evaluation

The first step of the application is to identify the land cover through a visual 
investigation in order to determine the main classes of a study area. The following 
classes were considered in this work: buildings, roads, bare soil, greenhouses, and 
herbaceous and tree crops.

During the training phase of each ML algorithm, it was necessary to identify 
training sites to statistically characterize the reflectance of each class that was consid-
ered; this enabled a signature analysis to represent the variations in the reflectance 
or emittance of a material across wavelengths  [32]. After determining a statistical 
characterization for all classes, the classification was conducted by evaluating the re-
flectance of each pixel and choosing which signature had the most resemblance to it.

The experiments were carried out considering two data sets: DS-3B (which in-
cluded the red, green, and blue bands), and DS-4B (which included all of the multi-
spectral bands (visible + NIR).

Machine-Learning Algorithms
In this part, we introduce and discuss machine learning classifiers used in this 

work: support vector machine (SVM), decision tree (DT), normal Bayes (NB), ran-
dom forest  (RF), and k-nearest neighbors (k-NN). For each algorithm, we will ex-
plore its underlying principles, strengths, and typical applications in the context of 
the classification tasks addressed in this study.
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Support Vector Machine. SVMs represent a powerful classification model in 
machine learning that is based on statistical learning theory [33]; this is a supervised 
non-parametric technique that does not assume an underlying data distribution. 
The method relies on a labeled data set, and the SVM training algorithm aims to find 
a hyperplane that separates the data set into a predefined number of classes that are 
in alignment with the training examples [34, 35]. The separating hyperplane defines 
a decision boundary that minimizes classification errors during the training  [36]; 
therefore, the algorithm identifies the optimal separating hyperplane that maximiz-
es the margin – the distance between the hyperplane and the support vectors [37]. 
Mathematically, this can be expressed as finding the hyperplane that is defined by 
Equation (1) given a specific data set [(x1, y1), (x2, y2), ..., (xn, yn)], where xi represents 
the feature vector, and yi represents the corresponding class label:

	 = + =( ) 0Ty i w x b 	 (1)

where w  is a vector that is normal to the hyperplane, and b  is the bias term. The 
margin is defined as the distance between the support vectors and the hyperplane. 
The SVM algorithm maximizes this distance by solving the following optimization 
problem:

	
21min 

2
w 	 (2)

which is subject to the following constraints:

	 ( ) 1, 1, 2, ,T
i i iy w x b n+ ≥ ∀ = … 	 (3)

This optimization seeks the values of w and b that maximize the margin while 
ensuring that all data points are correctly classified. In other words, each point must 
lie on the correct side of the margin boundary.

In a 2017 study that was conducted by Wang et al.  [38], the influence of the 
parameters that define the support vector machine algorithm was evaluated by com-
paring its results with those of other methods. Similarly, the studies by Foody and 
Pal [39, 40] proposed a method that was based on the SVM algorithm for the multi-
class classification of aerial sensors and Landsat ETM+ data, focusing on the impact 
of the training set size on the classification accuracy.

Decision Tree. DT  is a non-parametric supervised-learning algorithm that is 
used for both classification and regression tasks. This algorithm relies on sequential 
tests and decisions to perform its classifications. It has a tree-like structure, with 
a root node, branches (which represent decision paths), nodes (where tests are ap-
plied), and leaves (which represent class labels) [41]. The process of dividing a node 
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into two or more sub-nodes is known as the splitting phase [42]. At each node, the 
Gini impurity is calculated; this represents the probability that a randomly chosen 
sample is incorrectly labeled at a specific node [43]. This index is given by the fol-
lowing equation:

	
=

= −∑ 2

1
( ) 1

n

i
i

Gini j p 	 (4)

where pi is the proportion of the samples that belong to class i in node j.

In 2001, Pal and Mather [44] obtained excellent results in terms of accuracy by 
applying the decision tree algorithm for land-use classification; specifically, they 
used Landsat 7 ETM+ satellite images of an agricultural area near Littleport (UK). 
Berhane et al. [45] applied DT to classify wetlands in the Selenga River Delta (Lake 
Baikal, Russia) using high-resolution WorldView-2 satellite images. Finally, Friedl 
and Brodley’s study [46] examined various decision tree algorithms for land-cover 
classifications based on three distinct remote-sensing data sets. The research em-
phasized that decision trees provided key advantages for remote-sensing applica-
tions thanks to their straightforward intuitive structure, their nonparametric na-
ture, and their ability to handle nonlinear and noisy relationships between input 
features and class labels.

Normal Bayes. NB is a probabilistic machine-learning algorithm that relies on 
assumptions about the statistical distribution of the classes to be investigated. This 
algorithm uses training sites to estimate the mean and variance of each class; these are 
then used to evaluate the probability of assigning a pixel to a specific class [47–49]. 
A normal Bayes classification is based on Bayes’ theorem:

	 =
( | ) ( )( | )

( )
P X C P CP C X

P X
	 (5)

where P(C|X) is the posterior probability of class C given feature X, P(X|C) is the 
likelihood of observing  X given class  C,  P(C) is the prior probability of class  C, 
and P(X) is the evidence or total probability of observing X. Under the naïve as-
sumption that features are independent, the likelihood P(X|C) becomes the product 
of the individual feature probabilities:

	
=

=∏
1

( | ) ( | )
n

i
i

P X C P x C 	 (6)

where xi is the value of feature i for observation X. For each class Ck, the algorithm 
calculates the mean and variance for each feature xi using the training data.
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The prior probability P(Ck) is calculated based on the frequency of each class in 
the training data:

	 =)( k
k

T
P C

T
	 (7)

where Tk is the number of training samples in class Ck, and T is the total number of 
training samples.

To classify a new observation X, the algorithm calculates the posterior prob-
ability P(Ck|X) for each class Ck. Assuming a Gaussian distribution for the feature 
values, the likelihood P(xi|Ck) is given by the following:

	
 −

= −  
 

2
,

22
,,

µ(1( | exp
2π

)
2

)
σσ

i i k
i k

i ki k

x
P x C 	 (8)

The class with the highest posterior probability is selected as the predicted class for 
a pixel or region.

In Solares and Sanz [50], various Bayesian network algorithms (including nor-
mal Bayes) were compared in terms of their thematic accuracy for classifying multi-
spectral and hyperspectral remote-sensing images. In a study by Yang and Yu [51], 
this algorithm was applied for the texture classification of high-resolution satellite 
images (specifically, GeoEye-1 imagery), with the aims of achieving automation and 
optimal accuracy.

Random Forest. RF is a widely used ensemble-learning algorithm that builds its 
models based on the results from different decision trees; its final prediction result 
is obtained by averaging the outputs or by majority voting [52]. This algorithm is 
based on a combination of decision trees that make up a so-called “forest”; therefore, 
a specific number of decision trees are trained using a random sample of an entire 
data set for each tree [53]. The final classification decision is made through majori-
ty voting or by averaging class-assignment probabilities that have been calculated 
from all of the trees that have been produced. Unlabeled data is evaluated against 
all of the decision trees that have been created in the “forest,” and each tree votes for 
class membership; the class membership with the most votes will be the one that is 
ultimately selected [54].

Specifically, the random forest algorithm has been employed to classify agricul-
tural crops using multitemporal SAR images [55], forests in the Anderson River area 
(Fort St. James, British Columbia, Canada) using remote-sensing and geographic 
data [56], and urban areas using Ikonos and QuickBird satellite images (which fea-
tured four multispectral bands) [57].
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k-Nearest Neighbor. The k-NN algorithm is a non-parametric method [58] that 
uses training sites and classifies objects by considering the closest training sites (k) in 
a feature space [59]; i.e., it classifies unlabeled pixels by considering their similarities 
to training set examples. This algorithm considers each pixel of a data set as a point 
in n-dimensional space and classifies it based on its distance from the samples of the 
training set; the most commonly used distances are the Euclidean and Manhattan 
distances [60]. Once the distance between the unclassified pixel and all of the train-
ing data points is calculated, the next step is to select the k-NN. The classification de-
cision is then made based on a by majority vote; the algorithm counts the class labels 
of the k-NN, and the most frequently occurring class is assigned to the unclassified 
pixel. However, the computational efficiency of the k-NN algorithm is not optimal, 
as it struggles to handle large data sets; this is due to two main issues: memory con-
sumption, and computational cost [61]. The k-NN algorithm was applied by Thanh 
Noi and Kappas [62] for land use/land cover classification in the Red River Delta of 
Vietnam using Sentinel-2 data; it achieved excellent thematic accuracy as the num-
ber of training sites increased. In a study by Abedi and Bonyad [63], this algorithm 
was used to integrate IRS-P6 LISS III satellite-imagery data with ground-inventory 
data for forest-attribute estimation and mapping, thus demonstrating the effective-
ness of k-NN in terms of overall accuracy and the kappa coefficient.

2.3.	 Accuracy Assessment

Test sites are used to evaluate the thematic accuracy of sets of results. These sites 
act as representative samples for the classes that are under consideration, ensuring 
that they are adequately and significantly represented [64].

To describe the accuracy of the thematic map that is obtained from the classi-
fication process, we refer to the confusion matrix [65]. This matrix uses test sites or 
ground-truth data as a reference. To evaluate the classification accuracy, the follow-
ing metrics are calculated: producer accuracy  (PA), user accuracy  (UA), omission 
error (OE), commission error (CE), overall accuracy (OA), and F1-score.

PA represents the probability of correctly classifying a specific feature within 
a particular area (as defined by Fung and LeDrew [66]). For a particular class j, PA is 
calculated as follows:

	 = j
j

j

VA
PA

PB
	 (9)

where VAj is the number of pixels that are correctly classified as class j, and PBj repre
sents the total number of pixels that belong to this class in a reference image.

On the other hand, UA indicates the likelihood that a region that is classified 
under a specific category in a thematic map truly belongs to this category; it is 
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calculated as the ratio of the correctly classified pixels for a given class to the total 
number of pixels that were assigned to that class in a map. For class  j, UA is ex-
pressed as follows:

	 =  j
j

j

VA
UA

PD
	 (10)

where VAj refers to the number of pixels that are correctly classified as class j, and 
PDj is the total number of pixels that are assigned to class j in a thematic map.

OEs occur when pixels that belong to a reference class are excluded from this 
class in a thematic map. This is inversely related to PA and can be calculated by us-
ing the following:

	 = −1OE PA 	 (11)

CEs arise when pixels are incorrectly included in a specific class in a thematic 
map; this is inversely related to UA and is given by the following:

	 = −1CE UA 	 (12)

OA reflects the percentage of pixels that are correctly classified across an entire 
test data set; this is determined as the ratio of the total number of correctly classified 
pixels to the total number of pixels in the data set. OA is computed by using the 
following equation:

	
+ +…+

= j i nVA VA VA
OA

P
	 (13)

where VAj, VAi, ...,VAn represent the number of correctly classified pixels for each 
class, and P denotes the total number of test pixels.

F1-score is a performance metric that balances the trade-off between omission 
and commission errors by combining PA and UA into a single value; it is calculated 
as the harmonic mean of PA and UA for a given class j:

	
⋅

= ⋅
+

1 2 j j
j

j j

PA UA
F

PA UA
	 (14)

In the following subsections, the main characteristics of the ML algorithms that 
were used in our experiments and the available in OTB software that can be accessed 
in the QGIS environment are described.
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3.	 Results and Discussion

The different classification performances of various ML algorithms were tested 
using OA, UA, PA, CE, OE, and F1-score. Tables 2 and 3 present the classification 
results for the DS-3B data set.

Table 2. UA and PA results that were achieved by applying ML algorithms to DS-3B data set 
(highest value[s] for each class highlighted in bold)

Methods

Classes

Buildings Roads Bare Soil Tree Crops Herbaceous 
Crops Greenhouses

UA PA UA PA UA PA UA PA UA PA UA PA

SVM 0.98 0.89 0.92 0.96 0.88 0.96 0.92 0.92 0.91 0.91 0.99 0.93

DT 0.90 0.84 0.84 0.90 0.83 0.85 0.93 0.89 0.86 0.93 0.99 0.94

NB 0.82 0.92 0.72 0.91 0.91 0.87 0.99 0.61 0.69 0.53 0.69 0.97

RF 0.44 0.62 0.79 0.39 0.28 0.31 0.93 0.89 0.85 0.92 0.99 0.99

k-NN 0.98 0.86 0.91 0.93 0.83 0.95 0.93 0.89 0.86 0.92 0.99 0.92

Table 3. CE and OE that occurred by applying ML algorithms to DS-3B data set

Methods

Classes

Buildings Roads Bare Soil Tree Crops Herbaceous 
Crops Greenhouses

CE OE CE OE CE OE CE OE CE OE CE OE

SVM 0.02 0.11 0.08 0.04 0.12 0.04 0.08 0.08 0.09 0.09 0.01 0.07

DT 0.10 0.16 0.16 0.10 0.17 0.15 0.07 0.11 0.14 0.07 0.01 0.06

NB 0.18 0.08 0.28 0.09 0.09 0.13 0.01 0.39 0.31 0.47 0.31 0.03

RF 0.56 0.38 0.21 0.61 0.72 0.69 0.07 0.11 0.15 0.08 0.01 0.01

k-NN 0.02 0.14 0.09 0.07 0.17 0.05 0.07 0.11 0.14 0.08 0.01 0.08
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Figures  4 and  5 illustrate the  OA, and F1-score values that were associated 
with the classifications of the DS-3B data set using the different machine-learning 
algorithms.

Fig. 4. OA levels that were achieved  
by different ML algorithms (SVM, k-NN, DT, NB, and RF) for DS-3B data set  

(colors represent respective algorithms as are indicated in legend)

Fig. 5. F1-scores that were achieved  
by different ML algorithms (SVM, k-NN, DT, NB, and RF) for DS-3B data set 

 (colors represent respective algorithms as are indicated in legend)

The best-performing algorithms were SVM and k-NN, with OA values of 93% 
and 92%, respectively. The third-best-performing algorithm was DT, with an OA val-
ue of 89%, followed by normal Bayes (NB) and RF, with the latter former obtaining 
the worst OA value (70%).
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From the performance of RF, the most notable observations were its high ac-
curacy for the vegetation classes (0.88–0.99) and its poor classifications for artificial 
surfaces such as roads, buildings, and bare soil (Fig. 5); the reason behind this incon-
sistency was its use of ensemble decision trees that had a bias toward class separa-
bility within a data set with high spectral variability between the classes. Within this 
study, vegetation resulted in a better spectral response than artificial surfaces did, 
leading RF to give vegetation a higher priority than the man-made class categories. 
RF’s tendency toward overfitting the dominant spectral features may have also re-
duced its ability for classification generalization for mixed land cover.

Figure 6 shows a zoomed-in location within the study area; this displays the 
classification results and highlights the differences among the various ML methods 
(as are shown in Figure 7).

Tables 4 and 5 illustrate the classification results for the DS-4B  data  set. The 
top-performing model was DT (with 90% OA). The drop in performance for SVM 
and  k-NN when using the DS-4B  data set could have been linked to the pan-
sharpening process, which degraded spectral information from the NIR band.

Figures 8 and 9 illustrate this decline – highlighting the necessity of optimizing 
pan-sharpening techniques when incorporating NIR data.

A feature-importance analysis (Figs.  10,  11) confirmed the negligible contri-
bution of the NIR band toward classification and the justification for its exclusion 
for DS-4B.

Fig. 6. Geolocation of zoomed-in location within study area (red rectangle)
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Fig. 7. Zoom-in on small portion of study area to graphically show classification results  
for RGB composition (a) by following methods: SVM (b), DT (c), k-NN (d), NB (e), and RF (f)

a)	 b)

c)	 d)

e)	 f)



86	 D. Morale, C. Parente, S.F. Bolognesi

Table 4. UA and PA results that were achieved by applying ML algorithms to DS-4B data set 
(highest value[s] for each class highlighted in bold)

Methods

Classes

Buildings Road Bare Soil Tree Crop Herbaceous 
Crop Greenhouse

UA PA UA PA UA PA UA PA UA PA UA PA

SVM 0.99 0.85 0.79 0.97 0.77 0.90 0.67 0.94 0.92 0.43 0.99 0.95

DT 0.90 0.85 0.84 0.90 0.83 0.85 0.93 0.89 0.85 0.92 0.99 0.93

NB 0.91 0.91 0.45 0.96 0.91 0.80 0.92 0.34 0.74 0.42 0.97 0.97

RF 0.94 0.87 0.87 0.92 0.76 0.88 0.65 0.95 0.86 0.36 0.99 0.93

k-NN 0.49 0.78 0.72 0.39 0.31 0.27 0.93 0.89 0.85 0.91 0.99 0.93

Table 5. CE and OE that were achieved by applying ML algorithms to DS-4B data set

Methods

Classes

Buildings Roads Bare Soil Tree Crops Herbaceous 
Crops Greenhouses

CE OE CE OE CE OE CE OE CE OE CE OE

SVM 0.01 0.15 0.21 0.03 0.23 0.10 0.33 0.06 0.08 0.57 0.01 0.05

DT 0.10 0.15 0.16 0.10 0.17 0.15 0.07 0.11 0.15 0.08 0.01 0.07

NB 0.09 0.09 0.55 0.04 0.09 0.20 0.08 0.66 0.26 0.58 0.03 0.03

RF 0.06 0.13 0.13 0.08 0.24 0.12 0.35 0.05 0.14 0.64 0.01 0.07

k-NN 0.51 0.22 0.28 0.61 0.69 0.73 0.07 0.11 0.15 0.09 0.01 0.07

Fig. 8. OA levels that were achieved by different ML algorithms (SVM, k-NN, DT, NB, and RF) 
for DS-4B data set (colors represent respective algorithms as are indicated in legend)
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Fig. 9. F1-scores that were achieved by different ML algorithms (SVM, k-NN, DT, NB, and RF) 
for DS-4B data set (colors represent respective algorithms as are indicated in legend)

Fig. 10. Sum of split quality for each band in DT model

Fig. 11. Sum of split quality for each band in RF model
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a)	 b)

c)	 d)

e)	 f)

Fig. 12. Zoom-in on small portion of study area that graphically shows classification results 
for all multispectral band compositions when using following methods:  

RGB composition (a), SVM (b), DT (c), k-NN (d), NB (e), and RF (f)
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The ability of DT to remove low-information features explains its superior per-
formance relative to the other models when NIR bands are included. The findings 
demonstrated the value of spectral-band selection for remote-sensing classifications.

Figure 12 shows the thematic maps that were obtained from the classification of 
all of the multispectral bands for the same small portion of the study area that was 
considered previously.

Ultimately, the results indicated the most effective classifiers for  DS-3B 
were k-NN and SVM, and the best for DS-4B was DT (since it could remove the 
non-informative spectral bands). As is evident from various research papers [67], no 
classifier in the field of machine learning has performed optimally in all scenarios. 
While some studies [68] have suggested that ANNs were more accurate than DTs, 
others [69] have suggested the opposite. While some findings [70, 71] have similarly 
suggested that the performances of SVM and R  were equal in term of accuracy, oth-
ers [72–75] have suggested that SVM was more accurate than RF. The reasons were 
generally the approach that was taken in each particular study.

A comparative study  [76] that compared the performance of 30  data sets 
showed RF with the highest average accuracy (73.19%) – definitely better than SVM 
(62.28%); RF performed the best for just 18 out of the 30 data sets. The findings sug-
gested that the role of each data set’s characteristics determined the performance 
of each classifier and implied that no single algorithm could be considered to be 
universally superior.

The research also established the requirement for the appropriate choice of 
pan-sharpening methods and input spectral bands for the purpose of obtaining the 
best classification accuracy for high-resolution satellite data.

4.	 Conclusion

This study confirmed that machine-learning algorithms are effective for classi-
fying high-resolution satellite images; however, the band composition of the imag-
ery to be classified plays a fundamental role in producing accurate thematic maps.

In the classification of DS-4B (including the infrared band), SVM, k-NN, and NB 
yielded low UA and PA values for the herbaceous and tree crop classes (unlike when 
RGB composition was used). This issue may have stemmed from the pan-sharpening 
process, as the panchromatic channel did not include the near-infrared band. In 
fact, DT  and  RF were the only methods that were capable of achieving excellent 
results for the vegetation classification with DS-4B, as they automatically excluded 
the NIR band due to its low information gain during the attribute-selection process.

To improve the classification performance of multispectral pan-sharpened im-
ages, it is recommended that the panchromatic channel also include the infrared 
band – especially when vegetation is among the classes of interest. As demonstrated 
in this case study, classification results can be significantly affected and distorted 
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by improperly pan-sharpened infrared data; this can lead to suboptimal  PA and 
UA values and generate thematic maps that do not accurately reflect the ground 
conditions. The combined use of QGIS and OTB software enables the effective clas-
sification of high-resolution satellite images through supervised ML  algorithms.
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