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Abstract:	 Landslide identification and susceptibility maps play vital roles in support-
ing planners and decision-makers who manage disaster risks. By providing 
accurate information, these maps significantly contribute to minimizing the 
potential losses of life and property. To create effective landslide-susceptibility 
models, it is essential to incorporate a combination of terrain characteristics 
and meteorological factors, thus enhancing our understanding and prepared-
ness for such events. This study presents a comparative analysis of three kernel 
functions (linear, polynomial, and RBF) of an support vector classifier  (SVC) 
accompanied by a grid-search in order to determine optimal hyper-parameter 
settings. The primary objective of this methodological framework is to ensure 
accurate and reliable predictions for the generation of landslide-susceptibility 
maps in the South District of Sikkim, India. In this investigation, 14 condition-
ing factors were considered, including aspect, distance to streams, distance 
to roads, drainage density, elevation, lithology, land use/land cover  (LULC), 
normalized difference vegetation index (NDVI), plan curvature, profile curva-
ture, rainfall, slope, soil type, and earthquake susceptibility. The performances 
of the models were evaluated using a range of metrics, including the training 
score, testing score, kappa, sensitivity, specificity, accuracy, and area under the 
curve (AUC). Optimal hyper-parameter tuning for each SVC kernel was con-
ducted through a grid-search approach. The results indicated that the SVC_poly 
and SVC_rbf  models surpassed the linear model, achieving accuracy and 
AUC values of 0.907 and 0.908, respectively, in developing susceptibility maps. 
Consequently, both the SVC_poly and SVC_rbf models were identified as the 
most reliable and effective tools for landslide-susceptibility mapping in this 
study, making them optimal choices for predictive analyses in this domain.
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1.	 Introduction

Landslides signify the downward movement of soil, rock, debris, or large land 
masses that are influenced by gravitational forces. These phenomena are considered 
among the most hazardous events, posing significant threats to human life, prop-
erty, and infrastructure particularly, in mountainous regions. Various factors can 
trigger landslides, including heavy rainfall, seismic activity, deforestation, volcanic 
eruptions, and human activities such as construction or excavation. Such events dis-
turb the soil mass, rendering it unstable and increasingly susceptible to downward 
movement. Landslides not only disrupt local communities but also impede econom-
ic activities particularly in vital sectors such as agriculture and tourism (which are 
essential to regional economy)  [1–3]. Marked by its rugged topography and sub-
stantial monsoon rainfall, the Southern Sikkim area of India is particularly prone to 
the occurrences of landslides. Consequently, it is imperative to implement effective 
measures to mitigate the impacts of such disasters [4]. Conducting a landslide zona-
tion study for the area is a crucial step toward sustainable land management, this can 
benefit not only Southern Sikkim but also other mountainous regions worldwide.

Landslide-susceptibility mapping plays a crucial role in understanding and 
mitigating the risks that are associated with landslides in a given study area. This 
process involves categorizing the area into distinct zones specifically, those that are 
labeled to have very low, low, moderate, high, and very high susceptibility levels. 
This classification is based on the severity or probability of landslide occurrences 
by taking a variety of contributing factors into account, including topographical 
characteristics (such as slope, elevation, and drainage patterns), geological attributes 
(like soil type and rock stability), and anthropogenic influences (including land-use 
changes and infrastructure development). Researchers in this domain have explored 
various techniques for assessing landslide-susceptibility. These techniques can be 
categorized into bivariate (frequency ratio, weight of evidence, and information 
value) and multivariate statistical methods (logistic regression and deterministic 
techniques). In bivariate statistical techniques, individual causative factors are an-
alyzed separately in order to evaluate their contributions to landslides in a specific 
area. This approach aims to explore correlations or comparisons between two vari-
ables [5–7]. On the other hand, multivariate statistical techniques examine the rela-
tionships among multiple causative factors simultaneously in order to understand 
their relative contributions to the overall landslide-susceptibility levels [8–10]. Nu-
merous studies have been carried out that have included various statistical methods 
that were used for assessing landslide-susceptibility in various geographical con-
texts. These include fuzzy logic, weight of evidence, the analytical hierarchy process, 
logistic regression, neural networks, the index of entropy, and the frequency ratio. 
These techniques have been applied in numerous studies across countries such as 
Italy, China, Iran, Bangladesh and India. The research considered different numbers 
of conditioning factors (geological, hydrological, and topographical factors) in order 
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to evaluate landslide-susceptibility. The application of these statistical methods cov-
ered diverse geological settings and scales from local to regional assessments. This 
broad application enabled comprehensive comparisons of the effectiveness of these 
approaches across different landscapes, thus highlighting the versatility and appli-
cability of these statistical methods in landslide-susceptibility assessments [11–16].

In recent years, the field of landslide-susceptibility mapping has been revo-
lutionized by advancements in machine learning and artificial intelligence. These 
cutting-edge technologies have introduced novel approaches that complement and, 
in some cases, surpass traditional statistical methods. The integration of recent ad-
vancements in geospatial technologies such as geographic information systems (GIS) 
and remote sensing with machine learning algorithms has transformed the land-
scape of landslide-susceptibility mapping. These innovations allow researchers to 
generate highly accurate predictive models that analyze complex datasets and iden-
tify patterns that are indicative of landslide risk. The integration of machine learning 
and AI with traditional statistical methods has led to the development of hybrid 
approaches, thus combining the strengths of both methodologies  [2,  17–22]. This 
synergy has resulted in more accurate and reliable landslide-susceptibility maps 
that are capable of capturing subtle variations in landscape characteristics and their 
influence on slope stability. These AI-driven techniques offer several advantages, in-
cluding the ability to handle large datasets, incorporate a wide range of variables, 
and adapt to non-linear relationships between those factors that influence landslide 
occurrences. Moreover, they can often provide probabilistic outputs, which are par-
ticularly valuable for risk assessment and decision-making processes.

As the field of landslide-susceptibility mapping continues to evolve, research-
ers are increasingly exploring the capabilities of advanced deeplearning algorithms 
and extensive big data analytics [23–27]. These cutting-edge innovations are antic-
ipated to significantly improve not only spatial resolution (thus, allowing for the 
finer-scale mapping of hazardous areas), but also the temporal resolutions (which 
are critical for understanding and predicting when landslides might occur). En-
hanced predictions can lead to more timely interventions and emergency respons-
es, thus potentially saving lives and reducing economic losses. The ultimate aim 
of landslide-susceptibility mapping is to facilitate proactive risk assessment and 
support informed mitigation planning. By accurately identifying geographic areas 
that are prone to landslides, various stakeholders (including urban planners, engi-
neers, geologists, and disaster management agencies) can devise effective strategies 
to mitigate risks. These strategies may include land-use planning, infrastructure 
improvements, and community-awareness initiatives that aim to minimize damage 
and safeguard lives. Despite these advancements, a notable gap exists in the litera-
ture concerning the hyper-parameter tuning of these machine learning algorithms. 
Effective hyper-parameter tuning is essential for optimizing model performance, 
thus ensuring stability, and increasing the reliability of predictions. Without this 
fine-tuning, even sophisticated algorithms may produce results that are inconsistent 
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or misleading, this undermines their utility in real-world applications. This study 
aims to develop a comprehensive landslide-susceptibility zonation model for 
Southern Sikkim using a support vector classifier (SVC) that is optimized through 
a grid-search approach. This approach is intended to refine the SVC parameters sys-
tematically, thus ensuring that the resultant model is both accurate and reliable for 
assessing the risks of landslides in the region. By leveraging remote sensing data 
and geographic information systems (GIS), various conditioning factors that influ-
ence landslide occurrences are analyzed (including aspect, distance to streams, dis-
tance to roads, drainage density, elevation, lithology, land use/land cover [LULC], 
normalized difference vegetation index [NDVI], plan curvature, profile curvature, 
rainfall, slope, soil type, and earthquake susceptibility). The optimization of the 
SVC model will enhance its predictive performance, thus ensuring that the resulting 
susceptibility maps are both accurate and reliable. The objectives of this research 
are threefold: first, identifying and analyzing the key factors that contribute to land-
slide-susceptibility in Southern Sikkim; second, optimizing hyper-parameters using 
a grid-search and evaluating the SVC model for three kernels (linear, poly, and RBF) 
for the classification of landslide-susceptibility zones; and third, validating the mod-
el’s performance using established statistical methods. The outcomes of this study 
are expected to provide valuable insights for local authorities and stakeholders in 
implementing effective land-use planning and disaster risk reduction strategies.

2.	 Study Area

The study focuses on the South District of Sikkim, a region that is character-
ized by diverse topography (as is illustrated in Figure 1). This district features 
an extensive landscape that varies in altitude from 222 m to a towering 5,712 m. 
The geographical coordinates that delineate the study area span a latitude range 
from 27°4’N to 27°32’N and a longitude range from 88°15’E to 88°35’E. Within this 
region, six distinct soil types can be found, namely humid acrisols, dystric cam-
bisols, gleysols, luvi soils, lithosols, and dystric regosols. Each of these soil types 
plays a crucial role in the local ecosystem and influences agricultural practices, wa-
ter drainage, and vegetation growth.

The South District of Sikkim experiences significant rainfall, particularly during 
the monsoon months (from July through September), with an average annual pre-
cipitation of approximately 1,500 mm. This heavy rainfall contributes to the region’s 
susceptibility to landslides, which have historically caused considerable damage to 
property and resulted in losses of life. The frequency and severity of these landslides 
have underscored the need for a comprehensive assessment of the area in order 
to implement effective preventive measures. By thoroughly studying the geologi-
cal and climatic aspects of this district, we can develop strategies to mitigate risks 
and protect both human and environmental resources in this vulnerable  region.
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3.	 Landslide-Conditioning Factors (LCFs)

This study utilized a set of 14  conditioning factors for accurately mapping 
the landslide-susceptibility, including the following variables: aspect, distance to 
streams, distance to roads, drainage density, elevation, lithology, LULC, the NDVI, 
plan curvature, profile curvature, rainfall, slope, soil type, and earthquake suscepti-
bility. These factors were meticulously analyzed in terms of their spatial distribution 
(as illustrated in Figure 2 on the interleaf).

Fig. 1. Study area location map:  
a) map of India; b) map of Sikkim State; c) map of South District, Sikkim, India

	 a)

b)	 c)



Fig. 2. Landslide-conditioning factors (LCFs) that influence landslide occurrences in study area: a) slope; b) soil type; c) aspect; d) distance to roads; e) distance to streams; f) lithology; g) drainage density;  
h) earthquake susceptibility; i) elevation; j) NDVI; k) profile curvature; l) LULC; m) rainfall; n) plan curvature

a)	 b)	 c)	 d)	 e)

f)	 g)	 h)	 i)	 j)

k)	 l)	 m)	 n)
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The aspect map (SRTM-DEM), which illustrates the orientations of the slopes, 
was categorized into nine distinct classifications, these include eight directional clas-
sifications: north, northeast, east, southeast, south, southwest, west, and northwest. 
A comprehensive understanding of slope aspect is essential, as it influences sunlight 
exposure, moisture retention, and soil development (each of which playing a signifi-
cant role in determining vegetation cover and stability). The distance-to-streams map 
(https://www.hydrosheds.org/) was divided into five ranges; these indicate distanc-
es to water bodies (which have a considerable impact on soil saturation and stabil-
ity). The specified ranges are as follows: (i) 111.32–556.60 m; (ii) 556.60–1335.84 m; 
(iii) 1335.84–2115.08 m; (iv) 2115.08–2894.32 m; and (v) 2894.32–6233.92 m. It is im-
portant to note that greater distances from streams may increase the risk of land-
slides due to potential soil saturation. This phenomenon occurs because river ero-
sion removes support at the bases of slopes, while saturation weakens soil strength 
by increasing water content. Together, these processes greatly increase the risk 
and severity of landslides by making slopes more unstable and prone to failure. 
Similarly, the distance-to-roads map (https://diva-gis.org/) was classified into five 
categories based on the distances from transportation infrastructure (which fre-
quently influences land utilization and vegetation patterns). The classifications 
are as follows: (i) 111.32–2449.04 m; (ii) 2449.04–5343.36 m; (iii) 5343.36–9016.92 m; 
(iv) 9016.92-14026.32 m; and (v) 14026.32–22264.00 m. The construction processes of 
roads can significantly disrupt hydrological patterns and compromise slope stability; 
these effects stem from both the initial construction activities and ongoing vehicular 
traffic. The alterations in water flow patterns, coupled with the persistent vibrations 
from passing vehicles, create unfavorable conditions that may increase the risk of slope 
instability over time. The drainage density map (SRTM-DEM) was classified into three 
categories: (i) 2.07–5.11 km/km2; (ii) 5.11–6.61 km/km2; and (iii) 6.61–8.12 km/km2. 
Higher drainage density values are indicative of rapid runoff with decreased infiltra-
tion, while lower values suggest greater infiltration and slower runoff.

The elevation map (SRTM-DEM) delineated the study area into five distinct eleva-
tion ranges, which are critical for understanding the topographical factors that influ-
ence landslides: (i) 222–1032 m; (ii) 1032–1703 m; (iii) 1703–2480 m; (iv) 2480–3565 m; 
and (v) 3565–5712 m. Elevation is strongly correlated with climatic conditions and 
vegetation cover, both of these are pivotal in the dynamics of landslide occurrenc-
es. The lithology map (U.S. Geological Survey) offers a geological perspective that 
categorized the area into two primary types: (i) undivided Precambrian rocks; and 
(ii) undivided Paleozoic rocks. The nature of the underlying rock material is instru-
mental in determining slope stability. The LULC map (SRTM-DEM) was classified 
into eight categories: (i) water; (ii) trees; (iii) crops; (iv) built-up areas; (v) bare ground; 
(vi) snow/ice; (vii) clouds; and (viii) rangeland. This map provides valuable spatial 
information regarding land utilization, thus facilitating the tracking of changes in 
land use over time, the planning and designing of sustainable urban environments, 
the gaining of insights into areas that are vulnerable to natural disasters, and the 

https://www.hydrosheds.org/
https://diva-gis.org/
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identification of land that is suitable for large-scale projects. To evaluate vegetation 
health and its implications for landslide-susceptibility, the normalized difference 
vegetation index (NDVI) map (SRTM-DEM) was classified into three ranges: (i) from 
−0.188 to 0.128; (ii) from 0.129 to 0.244; and (iii) from 0.245 to 0.999. NDVI values re-
flect photosynthetic activity and vegetation health, with healthier vegetation offer-
ing enhanced soil stabilization. The plan-and-profile-curvature maps (SRTM-DEM) 
were categorized into three classifications (based on terrain convexity or concav-
ity): (i)  concave; (ii)  flat; and (iii)  convex. A land’s curvature influences its water 
drainage and soil retention, significantly affecting the many risks that are associ-
ated with landslides. The rainfall map (https://mausam.​imd.​gov.in/) was segment-
ed into three categories that measured average precipitation within the study area 
(a critical factor in landslide occurrences): (i)  2036–2472 mm; (ii)  2473–2820 mm; 
and (iii) 2821–3301 mm. Elevated precipitation levels can lead to increased soil satu-
ration and heightened landslide-susceptibility. The slope map (SRTM-DEM) of the 
study area was classified into five distinct slope categories based on the degree of 
inclination: (i) 0–17° is categorized as a very low slope; (ii) 17–26° – as a low slope; 
(iii) 26–34° – as a moderate slope; (iv) 34–44° – as a high slope; and (v) 44–84° – as 
a very high slope. This classification is essential, as slope steepness serves as a signif-
icant indicator of landslide potential (however, the relationship is not directly pro-
portional). On very steep slopes, the impact may be smaller, as rapid runoff reduces 
water infiltration into rock masses, which can slow the developments of landslides.

The soil type map categorized the study area into five distinct soil classifica-
tions: (i) humid acrisols; (ii) dystric cambisols; (iii) gleysols luvi; (iv) lithosols; and 
(v) dystric regosols. Each of these soil types possesses unique characteristics that in-
fluence moisture retention and erosion potential (which are both essential for under-
standing landslide behavior). Additionally, the earthquake map segmented seismic 
events into three magnitude ranges: (i) 2.688–4.05; (ii) 4.05–4.819; and (iii) 4.82–5.847. 
This recognizes the influence of seismic activity on the occurrences of landslides. 
The thematic maps that were developed in this study were crafted with meticu-
lous attention to detail, thus facilitating a comprehensive analysis of landslide-
susceptibility through their integration with landslide occurrence data. This holistic 
approach enabled a more accurate and thorough evaluation of the various factors 
that contribute to landslide risks within the study area.

4.	 Multicollinearity Analysis of Landslide Conditioning Factors

Multicollinearity analysis is a crucial step in evaluating the relationships among 
independent variables (often referred to as  LCFs in this study). Multicollinearity 
occurs when strong correlations exist between LCFs, which can introduce inaccu-
racies and lead to instability in a predictive model. To assess the degrees of correla-
tion among the LCFs within the study area, this investigation employed two widely 

https://mausam.imd.gov.in/
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recognized statistical techniques: Pearson’s correlation coefficient and the variance 
inflation factor (VIF). Pearson’s correlation coefficient measures the linear relation-
ship between pairs of variables, while VIF quantifies how much the variance of an 
estimated regression coefficient increases due to multicollinearity. For this analysis, 
the LCFs were selected based on a Pearson’s correlation threshold of 0.7 (indicating 
a strong linear relationship) and a maximum acceptable VIF value of 10 (suggest-
ing that multicollinearity does not excessively influence the model).

Figures 3 and 4 present the findings for Pearson’s correlation and VIF, respec-
tively. Notably, the highest Pearson’s correlation coefficient was found to be 0.49, 
which indicated a moderate positive correlation between elevation and the dis-
tance  to streams. This correlation suggested that, as the elevation increased, the 
distances to streams also tended to increase (although the correlation was not strong 
enough to raise concerns of multicollinearity). Additionally, the maximum VIF that 
was calculated for one of the LCFs was 3.52 (specifically, for the elevation factor). 
This value fell well below the threshold of  10, further supporting the absence of 
problematic multicollinearity within the selected variables.

Fig. 3. Pearson correlation matrix
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The outcomes of this comprehensive multicollinearity analysis indicated that all 
of the proposed landslide-conditioning factors were viable for use when modeling 
the landslide-susceptibility within the southern region of Sikkim. The results not only 
affirmed the suitability of the LCFs but also enhanced the reliability of the modeling 
process (which aimed to understand and predict landslide occurrences in this area).

5.	 Landslide Inventory

The landslide data that was utilized in this analysis was obtained from the Bhu-
kosh Geological Survey of India. The landslide inventory was comprised only of 
reported events (which are predominantly documented in accessible or populated 
areas). Consequently, it may not have comprehensively captured landslide occur-
rences in remote or inaccessible regions, thus leading to potential spatial bias in the 
dataset. This dataset encompassed a total of 196 distinct landslide data points (as 
illustrated in Figure 5). These data points were subsequently imported into ArcGIS 
(a sophisticated geographic information system) to generate polygons that served as 
the basis for the comprehensive dataset that was required for in-depth analysis. In 
order to create a balanced and robust dataset, an additional 200 non-landslide data 
points were randomly generated within ArcGIS. Corresponding polygons for these 
non-landslide points were also developed, thus ensuring that the analysis accounted 
for both landslide and non-landslide occurrences. By integrating the LCFs with the 
landslide and non-landslide data, a consolidated dataset that consisted of 2,648 data 
points was established for a thorough evaluation. This consolidated dataset was 
subsequently divided using a 70:30 ratio (with 70% allocated for training purposes, 

Fig. 4. VIF analyses of LCFs
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and 30%  reserved for testing). This strategic division was designed to facilitate 
a comprehensive analysis, thus allowing for the development of predictive models 
while ensuring the reliability and validity of the results.

Fig. 5. Landslide point location map of South District, Sikkim, India

6.	 Support Vector Classifier (SVC)

Support vector classifiers are supervised learning models machine-learning al-
gorithms that were presented by Cortes and Vapnik [28] that were based on the sta-
tistical learning theory and used to perform regression and classification analyses. 
The objective of SVC algorithms is to find the largest margins between two classes 
by hyperplanes. SVCs utilize the concept of mapping data into high-dimensional 
spaces (where linear classifications are carried out). SVC algorithms were developed 
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from the optimal problem of a classification hyper-plane under linearly separable 
conditions. The concept of the algorithms is to maximize the intervals of training sets 
and minimize bounds on the generalization errors of models rather than minimizing 
only the mean square errors over the datasets. The kernel functions (polynomial, 
linear, radial basis function) make SVCs more flexible and able to handle non-linear 
problems. Therefore, SVCs are also used for classifying non-linear problems.

The introduction of kernel functions by Boser et al.  [29] extended SVC’s ca-
pability of handling non-linearly separable data. Cortes and Vapnik [28] presented 
the SVC formulation, showcasing its ability to find optimal separating hyperplanes 
with maximum margins by introducing two terms; i.e., slack variable ξ, and penalty 
factor C. Slack variable ξ measures the standard deviation of a data pattern from the 
ideal condition, whereas penalty factor C defines the trade-off having a wide margin 
and fewer classification errors in training data.

Key functions and conditions in SVM are as follows:
	– Classification constraints:

•	 for linearly separable data:

	 + − ≥[( ) ] 1 0T
i iy w x b 	 (1)

•	 for linearly inseparable data:

	 + ≥ − ξ[( ) ] 1T
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	– SVM kernel functions:
•	 linear kernel:
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•	 polynomial kernel:

	 = ϒ + ϒ >( ( ) , 0)   T d
i j ik x x x r 	 (5)
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where w is an adaptive weight factor, x is an input vector, b is bias, wT x is an inner 
product of w and x, and Ƴ, r, and d are the kernel parameters.
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The current study utilizes grid-search to optimize hyper-parameters of the 
SVC model, including C, gamma, kernel, and degree. This method systematical-
ly explores a range of values to find the best combination for model performance. 
Grid-search evaluates each parameter combination using cross-validation to ensure 
good generalization to unseen data, resulting in an accurate and reliable SVC model 
(as shown in Table 1).

Table 1. SVC hyperparameter tuning using grid search

Model Hyperparameter range Optimal values

SVC_linear C = [1–200]; step size = 1 97

SVC_poly
C = [1–200]; step size = 1 34

Degree = [1, 2, 3] 2

SVC_rbf
C = [1–200]; step size = 1 122

Gamma = [0.001, 0.01, 0.1] 0.01

7.	 Methodology

The methodology that was employed in this study (depicted in Figure 6) delin-
eates a thorough and systematic framework that was aimed at achieving the accurate 
and dependable mapping of landslide-susceptibility. A critical component of this pro-
cess was the optimization of the hyper-parameters for the machine learning models 
that were used specifically for the different kernel functions of the SVC. Prior to con-
ducting the primary analysis, it was imperative to refine these hyper-parameters in or-
der to enhance the model’s predictive accuracy. To facilitate effective hyper-parameter 
optimization, the study utilized a structured approach known as grid search; this 
method is characterized by its systematic and comprehensive nature that involves the 
definition of a clearly structured range of potential hyper-parameter values. The grid 
search process systematically evaluates each combination of these values to determine 
the configuration that provides the optimal performance for the specific objectives of 
landslide-susceptibility mapping. The study thoroughly investigated various combi-
nations of hyper-parameters in order to ascertain the optimal settings for each machine 
learning model, thus ensuring their efficacy in modeling landslide-susceptibility. The 
specific ranges of the hyper-parameters that were considered during this tuning pro-
cess are detailed in Table 1 (which contributes to the transparency and reproducibil-
ity of the methodology). Through this rigorous optimization procedure, the models 
were refined to achieve their peak performance. This optimization step was vital for 
enhancing the accuracy and reliability of the landslide-susceptibility mapping, thus 
establishing a solid foundation for subsequent analyses and interpretations.
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The weights that were assigned to each thematic layer were analyzed for the var-
ious kernel functions of the SVC (specifically, linear, polynomial, and RBF kernels). 
Each thematic layer received a weight on a scale from 0 to 1, with higher values indi-
cating greater influences on the occurrences of landslides. Furthermore, the causative 
factors were categorized according to the severity of their roles in triggering landslides 
for each SVC kernel function. All of the thematic maps that depicted these causative 
factors were compiled in the raster format, with a pixel size of 30 m × 30 m. The final 
landslide-hazard-zonation map was developed through a spatial overlay analysis of 
each thematic layer. The comprehensive methodology that was employed in this study 
enhances our understanding of the factors that contribute to landslide occurrences and 
highlights the significance of thorough preparation in predictive modeling.

8.	 Results and Discussion
8.1.	 Model Performance Comparison
This study employed the support vector classification  (SVC) machine learn-

ing technique that utilized various kernel functions (including linear, polynomi-
al, and radial basis functions  [RBF]) to develop accurate and reliable models for 

Fig. 6. Methodology of study
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generating landslide-susceptibility maps. Each model underwent a comprehensive 
hyper-parameter optimization process that was conducted through grid-search op-
timization. The optimal hyper-parameters that were obtained during this process 
are presented in Table 1. The results were systematically compared, thus facilitat-
ing in-depth analysis of the performances of the machine learning models. These 
results were visually represented through corresponding susceptibility maps, thus 
offering valuable insights into understanding and predicting landslide occurrences. 
A critical component of the analyses involved evaluations of the classifier’s perfor-
mance that were emphasized by area under the curve (AUC) and accuracy metrics. 
The AUC highlighted the necessity of thorough evaluations of the accuracy of the 
models in the context of landslide-susceptibility assessment, thus ensuring that the 
findings were both reliable and actionable for the relevant stakeholders. The accu-
racy metric assessed the proportion of the correct predictions relative to the total 
number of predictions, thus providing a more dependable estimate of the model’s 
performances by incorporating all of the data points for both training and testing. 
To  evaluate the  accuracy, the five-fold cross-validation technique was utilized, 
wherein the model was trained on four folds (with the remaining one designated for 
the testing). This procedure was repeated five times each time, with a different fold 
serving as the test set.

Fig. 7. ROC curves
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Figure 7 illustrates the ROC  curves for the various SVC  kernels, thus high-
lighting their effectiveness in distinguishing among the classes. The AUC values, 
which assessed the model’s discriminative capabilities, indicated that SVC_rbf and 
SVC_poly achieved AUC values of 0.908 and 0.907, respectively. These figures sug-
gested a marked improvement in performance as compared to SVC_linear, which 
registered an AUC value of 0.84. The differences in these values reflected the inher-
ent characteristics of the respective algorithms, including their complexity and their 
aptitude for capturing feature-target relationships. The elevated AUC  values for 
SVC_rbf and SVC_poly implied superior discriminatory ability and overall perfor-
mance. In addition, Figure 8 presents a broader evaluation of several metrics, includ-
ing the training and testing scores, specificity, sensitivity, accuracy, and kappa co-
efficient, thus facilitating a comprehensive performance comparison of the models.

Fig. 8. Spider plots of evaluation metrics

For SVC_linear, the metrics were as follows: training score  –  0.844; testing 
score  –  0.846; specificity  –  0.807; sensitivity  –  0.872; accuracy  –  0.836; and kap-
pa – 0.679. In contrast, SVC_poly exhibited more favorable outcomes, with a training 
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score  –  0.938; testing score  –  0.914; specificity  –  0.87; sensitivity  –  0.943; accura-
cy – 0.925; and kappa – 0.82. Likewise, SVC_rbf yielded a training score – 0.945; testing 
score – 0.915; specificity – 0.87; sensitivity – 0.945; accuracy – 0.924; and kappa – 0.822. 
These results underscored the robust performance of SVC_rbf and SVC_poly across 
all of the assessed metrics, thus demonstrating their capability to effectively general-
ize and capture any complex relationships within the data. While SVC_linear deliv-
ered adequate results, its simpler algorithm conversely evidenced a comparatively 
lower performance due to its limitations in modeling the non-linear relationships. 
Overall, this analysis highlighted the effectiveness of  SVC_rbf and  SVC_poly for 
tasks that demand precise classification and strong generalization.

This study provided a thorough evaluation of ROC curves alongside their rele-
vant metrics in order to assess the predictive accuracies of the various models. A key 
component of this analysis was an examination of the confusion matrices (as are 
depicted in Figure 9). These matrices offered a detailed view of the classification 
performance by outlining the distribution of true positives, true negatives, false pos-
itives, and false negatives.

Fig. 9. Confusion matrix

The total number of misclassifications for each model served as an essential mea-
sure that reinforced the findings as related to the AUC and the overall effectiveness 
of the evaluated models. Among the models that were studied, SVC_linear demon-
strated the highest number of misclassifications (amounting to 122); this indicated its 
relatively lower predictive accuracy. In contrast, SVC_poly and SVC_rbf recorded the 
fewest misclassifications (with totals of 68 and 67, respectively). The similarity in 
the misclassification rates for these two models (SVC_poly and SVC_rbf) correspond-
ed with their higher AUC values, further validating their enhanced capabilities of dis-
tinguishing between susceptible and non-susceptible areas for landslide occurrences. 
This analysis not only highlighted the superior discriminatory power of SVC_poly 
and SVC_rbf but also underscored the practical implications of these models con-
cerning their classification reliability. By integrating the findings from the confusion 
matrices with the other performance metrics, this study emphasized the robustness of 
these kernels in landslide-susceptibility modeling, thereby establishing their appro-
priateness for tasks that demand high precision and minimal error rates.
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8.2.	 Landslide Susceptibility Zonation

The landslide-susceptibility maps that were generated using the various 
SVC kernels are illustrated in Figure 10. These maps provide a visual representa-
tion of how each kernel classified the study area into distinct levels of landslide-
susceptibility. They offer critical insights into the spatial distribution of land-
slide  risks, thus allowing stakeholders to identify high-risk zones and prioritize 
areas for targeted mitigation efforts.

Fig. 10. Generated landslide-susceptibility maps by SVC kernels
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To complement the visual analysis, Figure 11 presents the percentage-area dis-
tribution for each susceptibility classification (very low, low, moderate, high, and 
very high) across the different models. This quantitative assessment highlighted 
the degree to which each kernel predicted the susceptibility levels within the study 
area. For the SVC_linear kernel, the area that was classified as having very low sus-
ceptibility was the smallest (11.25% of the total area), while the high susceptibility 
class covered the largest proportion  (30.46%). This distribution indicated that the 
SVC_linear kernel took a more conservative approach in designating areas as having 
very low risk, while a substantial portion was assigned to highersusceptibility lev-
els. When compared to the historical landslide distribution, however (where 38.71% 
of the area fell under the very high class), the model still underrepresented the most 
critical zones.

Fig. 11. Area distribution of study area

The SVC_poly kernel designated the very high susceptibility class as the small-
est area (9.26%), with the moderate susceptibility class being the largest (29.30%). 
This distribution reflected a more balanced predictive capability, thus maintaining 
a relatively even allocation of those areas across the moderate and high-risk catego-
ries while representing fewer extremes in the very high and very low susceptibility 
areas. This broader spread may have reduced false positives, but it might have also 
underrepresented critical areas, as only a small fraction aligned with historically 
high landslide densities.

For the SVC_rbf kernel, the very low susceptibility class constituted the smallest 
proportion (7.79%), with the high susceptibility class displaying the largest cover-
age (31.67%). This trend suggested a stronger correlation with the actual landslide 
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distribution (which showed 33.81% and 38.71% in the high and very high categories, 
respectively), thereby supporting its observed superior performance metrics (like its 
higher AUC and fewer misclassifications).

As depicted in Figure 12, the final susceptibility map was derived as the av-
erage landslide-susceptibility index (LSI) of three maps (as is shown in Figure 10). 
The probability of landslide occurrences was quantified using the LSI, which ranged 
from 0 to 1. Here, a value of 0 indicated a very low probability of a landslide occur-
rence, while a value of 1 signified a very high probability.

Fig. 12. Final susceptibility map of study area

The area distribution of the final susceptibility map (as shown in Figure 13) 
presents the percentage area distribution for each susceptibility classification. It 
can be observed that the area that was classified as very low susceptibility was the 
smallest  (7.83%), while the moderate susceptibility class encompassed the largest 
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proportion  (27.31%). This distribution suggested that the final susceptibility map 
adopted a more conservative approach when designating areas as very low risk, 
while a significant portion was assigned to moderate susceptibility levels.

Fig. 13. Area distribution of final susceptibility map of study area

These comparative analyses of the susceptibility maps and area distributions 
underscored the unique predictive characteristics of each SVC kernel. By integrating 
both visual and quantitative insights, this study provides a comprehensive frame-
work for evaluating landslide risks, thereby offering valuable guidance for decision-
making in hazard management and risk mitigation planning.

8.3.	 Feature Importance Analysis

Feature importance plays a pivotal role in landslide prediction, as it involves as-
sessing the relevance and contribution of each input feature in the decision-making 
process of a model. By quantifying the influence of specific features on the model’s 
predictions, feature importance provides valuable insights into the factors that most 
significantly impact landslide-susceptibility. In this study, 14 features were utilized 
for landslide-susceptibility mapping: aspect, distance to streams, distance to roads, 
drainage density, elevation, lithology, LULC, the  NDVI, plan curvature, profile 
curvature, rainfall, slope, soil type, and earthquake susceptibility. Figure 14 pres-
ents the feature importance values that were assigned by each kernel of the SVC, 
which were scaled between 0 and 1. These values allowed for a comparative analysis 
of how each kernel prioritized the input features. To facilitate the interpretation, 
the features were categorized based on their assigned weightages into three lev-
els: low (0.0–0.3); moderate (0.3–0.6); and high (0.6–1.0) (as summarized in Table 2).
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The categorization highlighted the diversity in the feature importance across the 
SVC kernels, thus reflecting differences in their learning algorithms and decision-
making processes.

Table 2. Feature categorization

Model Low
(0.0–0.3)

Moderate
(0.3–0.6)

High
(0.6–1.0)

SVC_rbf Aspect, Distance to streams, 
Drainage density

Elevation, Distance 
to roads, NDVI

LULC, Lithology, Rainfall, 
Plan curvature, Soil type, 
Profile curvature, Slope, 
Earthquake susceptibility

SVC_poly LULC, Distance to streams, 
Aspect

NDVI, Distance to roads, 
Soil type, Drainage 
density

Elevation, Lithology, 
Plan curvature, 
Profile curvature,  
Rainfall, Slope, 
Earthquake susceptibility

SVC_linear Aspect, Elevation, Rainfall
Distance to streams, 
Earthquake susceptibility, 
Soil type

Distance to roads, 
Drainage density, Lithology, 
LULC, NDVI, Plan curvature, 
Profile curvature, Slope

Fig. 14. Feature Importance by SVC kernels
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The analysis of the SVC  kernels revealed distinct patterns in their feature 
importance concerning landslide-susceptibility. In the SVC_linear kernel, features 
that were classified under the low-importance category included aspect, distance 
to streams, distance to roads, drainage density, lithology, LULC, NDVI, plan 
curvature, profile curvature, and slope. Elevation and earthquake susceptibility 
were categorized as moderate, whereas rainfall and soil type were identified as 
high-importance features, thus clearly reflecting their significant impacts on land-
slide occurrences.

Conversely, the SVC_poly kernel designated LULC, NDVI, and soil type as 
low-importance features. A broader range of features (including distance to streams, 
distance to roads, drainage density, elevation, lithology, plan curvature, profile cur-
vature, rainfall, slope, and earthquake susceptibility) were classified as moderate. 
Notably, aspect was classified as high importance, thus suggesting its critical role in 
landslide-susceptibility mapping.

In the SVC_rbf kernel, aspect, elevation, and LULC were categorized as low-
importance features. Moderate features included distance to streams, distance to 
roads, lithology, plan curvature, profile curvature, slope, and earthquake suscepti-
bility, while drainage density, NDVI, rainfall, and soil type were classified as high 
importance. This underscored the significant influence of hydrological and vegeta-
tive factors along with soil type in determining landslide-susceptibility.

The differing feature importance across the SVC kernels highlighted the unique 
methodologies that were employed by each model in processing the input data. An 
understanding of these patterns provides valuable insights into the driving factors 
behind landslide-susceptibility, thus contributing to the enhancement of predic-
tive models.

9.	 Conclusion

The South District of Sikkim is prone to frequent landslides; these are primar-
ily attributed to seismic activity and rainfall. It is essential to identify the most 
vulnerable regions to facilitate informed decision-making and effective planning 
in land-use management and hazard mitigation.

This study focused on the landslide zonation of the South District of Sik-
kim by employing various kernel functions (linear, polynomial, and radial basis 
function) of a support vector classifier  (SVC), utilizing a geographic information 
system (GIS) and remote sensing techniques. The analysis incorporated 14 condi-
tioning factors, including aspect, distance to streams, distance to roads, drainage 
density, elevation, lithology, LULC, NDVI, plan curvature, profile curvature, rain-
fall, slope, soil type, and earthquake susceptibility. These factors were carefully 
selected to provide a comprehensive understanding of the region’s susceptibility 
to landslides.
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The resulting landslide zonation categorized the study area into five classes: 
very low, low, moderate, high, and very high susceptibility.

The conclusions that were drawn from this study, based on the data analy-
sis,  can be summarized as follows:

	– The application of grid-search for hyperparameter tuning proved to be an 
effective approach in optimizing the performances of SVC models. By sys-
tematically evaluating a wide range of parameter combinations, we iden-
tified optimal hyperparameter values that significantly enhanced model 
reliability and accuracy. The results that are presented in Table 1 illustrate 
how tailored adjustments to parameters such as the regularization con-
stant (C), degree, and gamma could lead to specific improvements for dif-
ferent SVC kernels. This meticulous tuning process underscored the impor-
tance of careful parameter selection in building robust machine-learning 
models that are capable of generalizing well to unseen data. Future work 
can build on these findings by exploring additional hyperparameter ranges 
and more sophisticated optimization techniques to further elevate model 
performance.

	– The performances of various models were evaluated through a comprehen-
sive set of metrics, including confusion matrices, training and testing scores, 
kappa, sensitivity, specificity, accuracy, and  AUC. This multifaceted ap-
proach ensured a thorough and nuanced assessment of each model’s capa-
bility to accurately classify landslide-susceptibility. Among the models that 
were assessed, SVC_poly and SVC_rbf demonstrated superior performance 
when compared to SVC_linear, achieving AUC values of 0.907 and 0.908, re-
spectively, along with respective accuracy rates of 0.925 and 0.924. Addition-
ally, the numbers of misclassifications for SVC_poly (68) and SVC_rbf (67) 
were significantly lower than those of SVC_linear (122), thereby reinforcing 
the reliability and precision of these models in identifying areas that are 
prone to landslides. The findings of this study highlighted the effectiveness 
of machine-learning techniques (particularly, SVC_poly and SVC_rbf) in 
producing accurate and dependable landslide-susceptibility maps. The final 
susceptibility map was produced by averaging the LSIs of the generated 
maps using the three kernels of the SVC. This map (Fig. 12) illustrated the 
overall susceptibility of the region to landslides based on a comprehensive 
analysis of multiple factors. Those areas with higher susceptibility were dis-
tinctly marked, thus offering critical insights into land-use planning and risk 
management. By integrating multiple kernels within the SVC model, the final 
map provided a more robust and comprehensive evaluation of landslide risk 
across the study area. These maps can serve as invaluable resources for stake-
holders, including policymakers, urban planners, and disaster-management 
authorities, thus facilitating proactive measures for mitigating landslide-
related risks.
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	– A comprehensive feature importance analysis was conducted to evaluate 
the impacts of various factors on landslide occurrences, thus providing es-
sential insights into those elements that are most strongly associated with 
landslide-susceptibility. This analysis was performed for each kernel of the 
SVC model by categorizing the features into three levels of importance: low, 
moderate, and high. This structured approach enhances our understanding of 
how each feature contributes to landslide prediction. The findings indicated 
that, for SVC_linear, rainfall and soil type were identified as high-importance 
features, while for  SVC_poly, aspect was classified under the list of high-
importance features. In SVC_rbf, drainage density, NDVI, rainfall, and soil 
type were classified as high-importance features. The results highlighted sev-
eral critical features, including rainfall, drainage density, the NDVI, soil type, 
and aspect. These findings emphasized the importance of focusing on these 
factors in those regions that are prone to landslides. To effectively mitigate 
landslide risks, it is imperative to implement measures such as enhanced 
rainfall monitoring systems, improved drainage infrastructures, vegetation 
restoration initiatives, and comprehensive studies of soil properties. By ad-
dressing these key factors, we can develop targeted mitigation strategies that 
significantly reduce the frequency and impacts of landslides, thereby pro-
moting safety and sustainability in vulnerable areas.
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