Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Corresponding Author(s) : Salah Arif
Geomatics and Environmental Engineering,
Vol. 17 No. 2 (2023): Geomatics and Environmental Engineering
Abstract
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Al-Sammak M.A., Hoagland K.D., Snow D.D., Cassada D.: Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples. Toxicon, vol. 76, 2013, pp. 316–325. https://doi.org/10.1016/j.toxicon.2013.10.015.
- Merel S., Walker D., Chicana R., Snyder S., Baures E., Thomas O.: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, vol. 59, 2013, pp. 303–327. https://doi.org/10.1016/j.envint.2013.06.013.
- Nieto P.J.G., Fernández J.R.A., Suárez V.M.G., Muñiz C.D., Gonzalo E.G., Bayón R.M.: A hybrid PSO optimized SVM-based method for predicting of the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir: A case study in Northern Spain. Applied Mathematics and Computation, vol. 260, 2015, pp. 170–187. https://doi.org/10.1016/j.amc.2015.03.075.
- Paerl H.W., Otten T.G.: Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, vol. 65(4), 2013, pp. 995–1010. https://doi.org/10.1007/s00248-012-0159-y.
- Bai X.Z., Zhang H.Y., Wang X.Y., Wang L., Xu J.P., Yu J.N.: The adaptiveclustering and error-correction method for forecasting cyanobacteria blooms in lakes and reservoirs. Advances in Mathematical Physics, vol. 7, 2017, 9037358. https://doi.org/10.1155/2017/9037358.
- Qin B.Q., Yang G.J., Ma J.R., Deng J.M., Li W., Wu T.F., Liu L.Z., Gao G., Zhu G.G.W., Zhang Y.L.: Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China. Chinese Science Bulletin, vol. 61(7), 2016, pp. 759–770. https://doi.org/10.1360/N972015-00400.
- Lehman P.W., Kurobe T., Lesmeister S., Baxa D., Tung A., Teh S.J.: Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae, vol. 63, 2017, pp. 94–108. https://doi.org/10.1016/j.hal.2017.01.011.
- Levy S.: Microcystis rising: why phosphorus reduction isn’t enough to stop cyanoHABs. Environmental Health Perspectives, vol. 125(2), 2017, pp. A34–A39. https://doi.org/10.1289/ehp.125-A34.
- Zhu W., Zhou X., Chen H., Gao L., Xiao M., Li M.: High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: evidence from field investigations and laboratory experiments. Water Research, vol. 101, 2016, pp. 167–175. https://doi.org/10.1016/j.watres.2016.05.080.
- Cook C.M., Vardaka E., Lanaras T.: Toxic cyanobacteria in Greek freshwaters, 1987 2000: occurrence, toxicity, and impacts in the mediterranean region. Acta Hydrochimica et Hydrobiologica, vol. 32(2), 2004, pp. 107–124. https://doi.org/10.1002/aheh.200300523.
- Mariani M.A., Padedda B.M., Kashirtovsky J., Buscarinu P., Sechi N., Virdis T., Luglie A.: Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Scientific Reports, vol. 5(1), 2015, 17964. https://doi.org/10.1038/srep17964.
- Saoudi A., Barour C., Brient L., Ouzrout R., Bensouilah M.: Environmental parameters and spatio-temporal dynamics of cyanobacteria in the reservoir of Mexa (Extreme North-East of Algeria). Advances in Environmental Biology, vol. 9(11), 2015, pp. 109–121.
- Bouhaddada R., Nélieu S., Nasri H., Delarue G., Bouaïcha N.: High diversity of microcystins in a Microcystis bloom from an Algerian lake. Environmental Pollution, vol. 216, 2016, pp. 836–844. https://doi.org/10.1016/j.envpol.2016.06.055.
- Bidi-Akli S., Hacene H., Arab A.: Impact of abiotic factors on the spatio-temporal distribution of cyanobacteria in the Zeralda’s dam (Algeria). Revue d’Écologie, vol. 72(2), 2017, pp. 159–167.
- Guellati F.Z., Touati H., Tambosco K., Quiblier C., Humbert J.-F., Bensouilah M.: Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PloS One, vol. 12(8), 2017, e0183540. https://doi.org/10.1371/journal.pone.0183540.
- Touati H., Guellati F.Z., Arif S., Bensouilah M.: Cyanobacteria dynamics in a Mediterranean reservoir of the north east of Algeria: vertical and seasonal variability. Journal of Ecological Engineering, vol. 20(1), 2019, pp. 93–107. https://doi.org/10.12911/22998993/94606.
- Lou I., Xie Z., Ung W.K., Mok K.M.: Freshwater algal bloom prediction by extreme learning machine in Macau Storage Reservoirs. [in:] Sun F., Toh K.-A., Romay M.G., Mao K. (eds.), Extreme Learning Machines 2013: Algorithms and Applications, Adaptation, Learning, and Optimization, vol. 16, Springer, Cham 2014, pp. 95–111. https://doi.org/10.1007/978-3-319-04741-6_8.
- Belourghi B., Houichi L., Heddam S.: Réseaux de Neurones Arti ciels pour la Modelisation du Dosage du Coagulant dans les Stations de Traitements des Eaux de Surface a Faible Turbidite. Conference paper at: ATGRSR 2012. II. Séminaire International Euro-Meditérraneen Aménagement du Térritoire, Gestion des Risques et Sécurité Routière Batna, Algerie, 2012.
- Heddam S.: Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA. Environmental Science and Pollution Research, vol. 23, 2016, pp. 17210–17225. https://doi.org/10.1007/s11356-016-6905-9.
- Hasanipanah M., Naderi R., Kashir J., Noorani S.A., Qaleh A.Z.A.: Prediction of blast-produced ground vibration using particle swarm optimization. Engineering with Computers, vol. 33(2), 2017, pp. 173–179. https://doi.org/10.1007/s00366-016-0462-1.
- Wang Q.J.: Using genetic algorithms to optimise model parameters. Environmental Modelling & Software, vol. 12(1) 1997, pp. 27–34. https://doi.org/10.1016/S1364-8152(96)00030-8.
- Meng X.-B., Gao X.Z., Lu L., Liu Y., Zhang H.: A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, vol. 28(4), 2016, pp. 673–687. https://doi.org/10.1080/0952813X.2015.1042530.
- Daghighi A.: Harmful Algae Bloom Prediction Model for Western Lake Erie Using Stepwise Multiple Regression and Genetic Programming. Cleveland State University, Cleveland 2017 [M.Sc. thesis].
- Nasri H., El Herry S., Bouaicha N.: First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicology and Environmental Safety, vol. 71(2), 2008, pp. 535–544. https://doi.org/10.1016/j.ecoenv.2007.12.009.
- Amrani A., Nasri H., Azzouz A., Kadi Y., Bouaicha N.: Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Archives of Environmental Contamination and Toxicology, vol. 66(3), 2014, pp. 379–389. https://doi.org/10.1007/s00244-013-9993-2.
- Boussadia M.I., Sehli N., Bousbia A., Ouzrout R., Bensouilah M.: The effect of environmental factors on Cyanobacteria abundance in Oubeira lake (Northeast Algeria). Research Journal of Fisheries and Hydrobiology, vol. 107(1), 1985, pp. 33–35. https://doi.org/10.1007/s00244-013-9993-2.
- Aminot A., Kérouel R.: Hydrologie des écosystèmes marins: paramètres et analyses. Infremer, Brest 2004.
- Komárek J., Kaštovský J., Mareš J., Johansen J.R.: Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, vol. 86(4), 2014, pp. 295–335.
- Komárek J.: A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology, vol. 51(3), 2016, pp. 346–353. https://doi.org/10.1080/09670262.2016.1163738.
- Luc B., Lengronne M., Bertrand E., Rolland D., Sipel A., Steinmann D., Baudin I. et al.: A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring, vol. 10(2), 2008, pp. 248–255. https://doi.org/10.1039/b714238b.
- Sheta A.F., Ahmed S.E.M., Faris H.: A comparison between regression, artificial neural networks and support vector machines for predicting stock market index. International Journal of Advanced Research in Artificial Intelligence, vol. 4(7), 2015, pp. 55–63. https://doi.org/10.14569/IJARAI.2015.040710.
- Chatterjee S., Hadi A.S.: Influential observations, high leverage points, and outliers in linear regression. Statistical Science, vol. 1(3), 1986, pp. 379–393. https://doi.org/10.1214/ss/1177013622.
- Regress (Multiple linear regression). MathWorks. https://www.mathworks.com/help/stats/regress.html [access: 7.06.2020].
- Khanmohammadi M., Azqhandi M.A.: Introducing an orthogonal-triangular decomposition algorithm and its application in multivariate calibration. Analytical Methods, vol. 3(12), 2011, pp. 2721–2725.
- Support Vector Machine (SVM). MathWorks. https://uk.mathworks.com/discovery/support-vector-machine.html [access: 12.06.2020].
- Vapnik V.N.: The Nature of Statistical Learning Theory. Information Science and Statistics, Springer, New York 1995. https://doi.org/10.1007/978-1-4757-3264-1.
- Bacue R.J.: An analytic overview of Estes’ statistical learning theory. Ohio University, 1999 [Ph.D. thesis].
- Noori R., Abdoli M., Ghasrodashti A.A., Ghazizade M.J.: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environmental Progress & Sustainable Energy, vol. 28(2), 2009, pp. 249–258. https://doi.org/10.1002/ep.10317.
- Wang D., Tan D., Liu L.: Particle swarm optimization algorithm: an overview. Soft Computing, vol. 22(2), 2018, pp. 387–408. https://doi.org/10.1007/s00500-016-2474-6.
- Aljarah I., Faris H., Al-Madi N., Sheta A., Mafarja M.: Evolving neural networks using bird swarm algorithm for data classification and regression applications. Journal of Cluster Computing, vol. 22(3), 2019, pp. 1317–1345. https://doi.org/10.1007/s10586-019-02913-5.
- Kingston G.B., Maier H.R., Lambert M.F.: Calibration and validation of neural networks to ensure physically plausible hydrological modelling. Journal of Hydrology, vol. 314(1–4), 2006, pp. 158–176. https://doi.org/10.1016/j.jhydrol.2005.03.013
- Heris S.M.K.: YPEA: Yarpiz Evolutionary Algorithms. Yarpiz, 2019. https://yarpiz.com/477/ypea-yarpiz-evolutionary-algorithms [access: 16.06.2020].
- Clerc M., Kennedy J.: The particle swarm-explosion, stability and convergence in a multi dimensional complex space. IEEE Transactions on Evolutionary Computation, vol. 6(1), 2002, pp. 58–73. https://doi.org/10.1109/4235.985692.
- Lin S.-W., Ying K.-C., Chen S.-C., Lee Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, vol. 35(4), 2008, pp. 1817–1824. https://doi.org/10.1016/j.eswa.2007.08.088.
- Lou I., Xie Z., Ung W.K., Mok K.M.: Integrating support vector regression with particle swarm optimization for numerical modeling for algal blooms of freshwater. [in:] Lou I., Han B., Zhang W. (eds.), Advances in Monitoring and Modelling Algal Blooms in Freshwater Reservoirs: General Principles and a Case study of Macau, Springer, Dordrecht 2017, pp. 125–141. https://doi.org/10.1007/978-94-024-0933-8_8.
- Olsson A.E. (ed.): Particle Swarm Optimization: Theory, Techniques and Applications. Nova Science Publishers, Hauppauge, New York 2010.
- Alba E., Garcia-Nieto J., Jourdan L., Talbi E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. [in:] CEC 2007: 2007 IEEE Congress on Evolutionary Computation: 25–28 September, 2007 Singapore, IEEE, Piscataway 2007, pp. 284–290. https://doi.org/10.1109/CEC.2007.4424483.
- Shen J., Qin Q., Wang Y., Sisson M.: A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading. Ecological Modelling, vol. 398, 2019, pp. 44–54. https://doi.org/10.1016/j.ecolmodel.2019.02.005.
- Li H., Zhang Y.: An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. [in:] 2009 9th International Conference on Electronic Measurement & Instruments, Beijing 2009, IEEE, Piscataway, pp. 4-1023–4-1027. https://doi.org/10.1109/ICEMI.2009.5274151.
- Bobbin J., Recknagel F.: Mining water quality time series for predictive rules of algal blooms by genetic algorithms. [in:] Oxley L. (ed.), MODSIM 1999 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Perth 1999, pp. 691–696.
- Altay E.V., Alatas B.: Bird swarm algorithms with chaotic mapping. Artificial Intelligence Review, vol. 53(2), 2020, pp. 1373–1414. https://doi.org/10.1007/s10462-019-09704-9.
- Brown S.H.: Multiple linear regression analysis: a matrix approach with MATLAB. Alabama Journal of Mathematics, vol. 34 (Spring/Fall), 2009, pp. 1–3.
- Rajaee T., Boroumand A.: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Expert Systems with Applications, vol. 35(4), 2008, pp. 1817–1824. https://doi.org/10.1016/j.apor.2015.09.001.
References
Al-Sammak M.A., Hoagland K.D., Snow D.D., Cassada D.: Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples. Toxicon, vol. 76, 2013, pp. 316–325. https://doi.org/10.1016/j.toxicon.2013.10.015.
Merel S., Walker D., Chicana R., Snyder S., Baures E., Thomas O.: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, vol. 59, 2013, pp. 303–327. https://doi.org/10.1016/j.envint.2013.06.013.
Nieto P.J.G., Fernández J.R.A., Suárez V.M.G., Muñiz C.D., Gonzalo E.G., Bayón R.M.: A hybrid PSO optimized SVM-based method for predicting of the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir: A case study in Northern Spain. Applied Mathematics and Computation, vol. 260, 2015, pp. 170–187. https://doi.org/10.1016/j.amc.2015.03.075.
Paerl H.W., Otten T.G.: Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, vol. 65(4), 2013, pp. 995–1010. https://doi.org/10.1007/s00248-012-0159-y.
Bai X.Z., Zhang H.Y., Wang X.Y., Wang L., Xu J.P., Yu J.N.: The adaptiveclustering and error-correction method for forecasting cyanobacteria blooms in lakes and reservoirs. Advances in Mathematical Physics, vol. 7, 2017, 9037358. https://doi.org/10.1155/2017/9037358.
Qin B.Q., Yang G.J., Ma J.R., Deng J.M., Li W., Wu T.F., Liu L.Z., Gao G., Zhu G.G.W., Zhang Y.L.: Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China. Chinese Science Bulletin, vol. 61(7), 2016, pp. 759–770. https://doi.org/10.1360/N972015-00400.
Lehman P.W., Kurobe T., Lesmeister S., Baxa D., Tung A., Teh S.J.: Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae, vol. 63, 2017, pp. 94–108. https://doi.org/10.1016/j.hal.2017.01.011.
Levy S.: Microcystis rising: why phosphorus reduction isn’t enough to stop cyanoHABs. Environmental Health Perspectives, vol. 125(2), 2017, pp. A34–A39. https://doi.org/10.1289/ehp.125-A34.
Zhu W., Zhou X., Chen H., Gao L., Xiao M., Li M.: High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: evidence from field investigations and laboratory experiments. Water Research, vol. 101, 2016, pp. 167–175. https://doi.org/10.1016/j.watres.2016.05.080.
Cook C.M., Vardaka E., Lanaras T.: Toxic cyanobacteria in Greek freshwaters, 1987 2000: occurrence, toxicity, and impacts in the mediterranean region. Acta Hydrochimica et Hydrobiologica, vol. 32(2), 2004, pp. 107–124. https://doi.org/10.1002/aheh.200300523.
Mariani M.A., Padedda B.M., Kashirtovsky J., Buscarinu P., Sechi N., Virdis T., Luglie A.: Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Scientific Reports, vol. 5(1), 2015, 17964. https://doi.org/10.1038/srep17964.
Saoudi A., Barour C., Brient L., Ouzrout R., Bensouilah M.: Environmental parameters and spatio-temporal dynamics of cyanobacteria in the reservoir of Mexa (Extreme North-East of Algeria). Advances in Environmental Biology, vol. 9(11), 2015, pp. 109–121.
Bouhaddada R., Nélieu S., Nasri H., Delarue G., Bouaïcha N.: High diversity of microcystins in a Microcystis bloom from an Algerian lake. Environmental Pollution, vol. 216, 2016, pp. 836–844. https://doi.org/10.1016/j.envpol.2016.06.055.
Bidi-Akli S., Hacene H., Arab A.: Impact of abiotic factors on the spatio-temporal distribution of cyanobacteria in the Zeralda’s dam (Algeria). Revue d’Écologie, vol. 72(2), 2017, pp. 159–167.
Guellati F.Z., Touati H., Tambosco K., Quiblier C., Humbert J.-F., Bensouilah M.: Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PloS One, vol. 12(8), 2017, e0183540. https://doi.org/10.1371/journal.pone.0183540.
Touati H., Guellati F.Z., Arif S., Bensouilah M.: Cyanobacteria dynamics in a Mediterranean reservoir of the north east of Algeria: vertical and seasonal variability. Journal of Ecological Engineering, vol. 20(1), 2019, pp. 93–107. https://doi.org/10.12911/22998993/94606.
Lou I., Xie Z., Ung W.K., Mok K.M.: Freshwater algal bloom prediction by extreme learning machine in Macau Storage Reservoirs. [in:] Sun F., Toh K.-A., Romay M.G., Mao K. (eds.), Extreme Learning Machines 2013: Algorithms and Applications, Adaptation, Learning, and Optimization, vol. 16, Springer, Cham 2014, pp. 95–111. https://doi.org/10.1007/978-3-319-04741-6_8.
Belourghi B., Houichi L., Heddam S.: Réseaux de Neurones Arti ciels pour la Modelisation du Dosage du Coagulant dans les Stations de Traitements des Eaux de Surface a Faible Turbidite. Conference paper at: ATGRSR 2012. II. Séminaire International Euro-Meditérraneen Aménagement du Térritoire, Gestion des Risques et Sécurité Routière Batna, Algerie, 2012.
Heddam S.: Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA. Environmental Science and Pollution Research, vol. 23, 2016, pp. 17210–17225. https://doi.org/10.1007/s11356-016-6905-9.
Hasanipanah M., Naderi R., Kashir J., Noorani S.A., Qaleh A.Z.A.: Prediction of blast-produced ground vibration using particle swarm optimization. Engineering with Computers, vol. 33(2), 2017, pp. 173–179. https://doi.org/10.1007/s00366-016-0462-1.
Wang Q.J.: Using genetic algorithms to optimise model parameters. Environmental Modelling & Software, vol. 12(1) 1997, pp. 27–34. https://doi.org/10.1016/S1364-8152(96)00030-8.
Meng X.-B., Gao X.Z., Lu L., Liu Y., Zhang H.: A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, vol. 28(4), 2016, pp. 673–687. https://doi.org/10.1080/0952813X.2015.1042530.
Daghighi A.: Harmful Algae Bloom Prediction Model for Western Lake Erie Using Stepwise Multiple Regression and Genetic Programming. Cleveland State University, Cleveland 2017 [M.Sc. thesis].
Nasri H., El Herry S., Bouaicha N.: First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicology and Environmental Safety, vol. 71(2), 2008, pp. 535–544. https://doi.org/10.1016/j.ecoenv.2007.12.009.
Amrani A., Nasri H., Azzouz A., Kadi Y., Bouaicha N.: Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Archives of Environmental Contamination and Toxicology, vol. 66(3), 2014, pp. 379–389. https://doi.org/10.1007/s00244-013-9993-2.
Boussadia M.I., Sehli N., Bousbia A., Ouzrout R., Bensouilah M.: The effect of environmental factors on Cyanobacteria abundance in Oubeira lake (Northeast Algeria). Research Journal of Fisheries and Hydrobiology, vol. 107(1), 1985, pp. 33–35. https://doi.org/10.1007/s00244-013-9993-2.
Aminot A., Kérouel R.: Hydrologie des écosystèmes marins: paramètres et analyses. Infremer, Brest 2004.
Komárek J., Kaštovský J., Mareš J., Johansen J.R.: Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, vol. 86(4), 2014, pp. 295–335.
Komárek J.: A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology, vol. 51(3), 2016, pp. 346–353. https://doi.org/10.1080/09670262.2016.1163738.
Luc B., Lengronne M., Bertrand E., Rolland D., Sipel A., Steinmann D., Baudin I. et al.: A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring, vol. 10(2), 2008, pp. 248–255. https://doi.org/10.1039/b714238b.
Sheta A.F., Ahmed S.E.M., Faris H.: A comparison between regression, artificial neural networks and support vector machines for predicting stock market index. International Journal of Advanced Research in Artificial Intelligence, vol. 4(7), 2015, pp. 55–63. https://doi.org/10.14569/IJARAI.2015.040710.
Chatterjee S., Hadi A.S.: Influential observations, high leverage points, and outliers in linear regression. Statistical Science, vol. 1(3), 1986, pp. 379–393. https://doi.org/10.1214/ss/1177013622.
Regress (Multiple linear regression). MathWorks. https://www.mathworks.com/help/stats/regress.html [access: 7.06.2020].
Khanmohammadi M., Azqhandi M.A.: Introducing an orthogonal-triangular decomposition algorithm and its application in multivariate calibration. Analytical Methods, vol. 3(12), 2011, pp. 2721–2725.
Support Vector Machine (SVM). MathWorks. https://uk.mathworks.com/discovery/support-vector-machine.html [access: 12.06.2020].
Vapnik V.N.: The Nature of Statistical Learning Theory. Information Science and Statistics, Springer, New York 1995. https://doi.org/10.1007/978-1-4757-3264-1.
Bacue R.J.: An analytic overview of Estes’ statistical learning theory. Ohio University, 1999 [Ph.D. thesis].
Noori R., Abdoli M., Ghasrodashti A.A., Ghazizade M.J.: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environmental Progress & Sustainable Energy, vol. 28(2), 2009, pp. 249–258. https://doi.org/10.1002/ep.10317.
Wang D., Tan D., Liu L.: Particle swarm optimization algorithm: an overview. Soft Computing, vol. 22(2), 2018, pp. 387–408. https://doi.org/10.1007/s00500-016-2474-6.
Aljarah I., Faris H., Al-Madi N., Sheta A., Mafarja M.: Evolving neural networks using bird swarm algorithm for data classification and regression applications. Journal of Cluster Computing, vol. 22(3), 2019, pp. 1317–1345. https://doi.org/10.1007/s10586-019-02913-5.
Kingston G.B., Maier H.R., Lambert M.F.: Calibration and validation of neural networks to ensure physically plausible hydrological modelling. Journal of Hydrology, vol. 314(1–4), 2006, pp. 158–176. https://doi.org/10.1016/j.jhydrol.2005.03.013
Heris S.M.K.: YPEA: Yarpiz Evolutionary Algorithms. Yarpiz, 2019. https://yarpiz.com/477/ypea-yarpiz-evolutionary-algorithms [access: 16.06.2020].
Clerc M., Kennedy J.: The particle swarm-explosion, stability and convergence in a multi dimensional complex space. IEEE Transactions on Evolutionary Computation, vol. 6(1), 2002, pp. 58–73. https://doi.org/10.1109/4235.985692.
Lin S.-W., Ying K.-C., Chen S.-C., Lee Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, vol. 35(4), 2008, pp. 1817–1824. https://doi.org/10.1016/j.eswa.2007.08.088.
Lou I., Xie Z., Ung W.K., Mok K.M.: Integrating support vector regression with particle swarm optimization for numerical modeling for algal blooms of freshwater. [in:] Lou I., Han B., Zhang W. (eds.), Advances in Monitoring and Modelling Algal Blooms in Freshwater Reservoirs: General Principles and a Case study of Macau, Springer, Dordrecht 2017, pp. 125–141. https://doi.org/10.1007/978-94-024-0933-8_8.
Olsson A.E. (ed.): Particle Swarm Optimization: Theory, Techniques and Applications. Nova Science Publishers, Hauppauge, New York 2010.
Alba E., Garcia-Nieto J., Jourdan L., Talbi E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. [in:] CEC 2007: 2007 IEEE Congress on Evolutionary Computation: 25–28 September, 2007 Singapore, IEEE, Piscataway 2007, pp. 284–290. https://doi.org/10.1109/CEC.2007.4424483.
Shen J., Qin Q., Wang Y., Sisson M.: A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading. Ecological Modelling, vol. 398, 2019, pp. 44–54. https://doi.org/10.1016/j.ecolmodel.2019.02.005.
Li H., Zhang Y.: An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. [in:] 2009 9th International Conference on Electronic Measurement & Instruments, Beijing 2009, IEEE, Piscataway, pp. 4-1023–4-1027. https://doi.org/10.1109/ICEMI.2009.5274151.
Bobbin J., Recknagel F.: Mining water quality time series for predictive rules of algal blooms by genetic algorithms. [in:] Oxley L. (ed.), MODSIM 1999 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Perth 1999, pp. 691–696.
Altay E.V., Alatas B.: Bird swarm algorithms with chaotic mapping. Artificial Intelligence Review, vol. 53(2), 2020, pp. 1373–1414. https://doi.org/10.1007/s10462-019-09704-9.
Brown S.H.: Multiple linear regression analysis: a matrix approach with MATLAB. Alabama Journal of Mathematics, vol. 34 (Spring/Fall), 2009, pp. 1–3.
Rajaee T., Boroumand A.: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Expert Systems with Applications, vol. 35(4), 2008, pp. 1817–1824. https://doi.org/10.1016/j.apor.2015.09.001.