Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library
Corresponding Author(s) : Polina Lemenkova
Geomatics and Environmental Engineering,
Vol. 14 No. 4 (2020): Geomatics and Environmental Engineering
Abstract
This article analyzes topographical and geological settings in the Japan Archipelago for comparative raster data processing using GRASS GIS. Data include bathymetric and geological grids in NetCDF format: GEBCO, EMAG2, GlobSed, marine free-air gravity anomaly and EGM96. Data were imported to GRASS by gdalwarp utility of GDAL and projected via PROJ library. Methodology includes data processing (projecting and import), mapping and spatial analysis. Visualization was done by shell scripting using a sequence of GRASS modules: "˜d.shade´ for relief mapping, "˜r.slope.aspect´; for modelling based on DEM, "˜r.contour´ for plotting isolines, "˜r.mapcalc´ for classification, "˜r.category´ for associating labels, and auxiliary modules (d.vect, d.rast, d.grid, d.legend).
The results of the geophysical visualization show that marine free-air gravitational anomalies vary in the Sea of Japan (‑30 to above 40 mGal) reflecting density inhomogeneities of the tectonic structure, and correlating with the geological structure of the seafloor. Dominating values of geoid model are 30‑45 m reflecting West Pacific rise, determined by deep density inhomogeneities associated with the mantle convention. Sediment thickness varies across the sea reflecting its geological development with density of 2 km in its deepest part and thinner in central part (Yamato Rise). The aspect map and reclassified map express gradient of the steepest descent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Lemenkova P.: GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, vol. 74 (97), no. 1, pp. 19–39.
- Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection, 2014, pp. 85–90.
- Lemenkova P.: Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, vol. 34, 2019, pp. 51–60.
- Schenke H.W., Lemenkova P.: Zur Frage der Meeresboden‑Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora‑See. Hydrographische Nachrichten, vol. 81, 2008, pp. 16–21.
- Farquharson C.G., Oldenburg D.W.: A comparison of automatic techniques for estimating the regularization parameter in non‑linear inverse problems. Geophysical Journal International, vol. 156, no. 3, 2004, pp. 411–425.
- Lemenkova P.: Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, vol. 27, no. 2, 2019, pp. 72–89.
- Cockett R., Kang S., Heagy L.J., Pidlisecky A., Oldenburg D.W.: SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, vol. 85, part A, 2015, pp. 142–154.
- Lemenkova P.: Geospatial Analysis by Python and R: Geomorphology of the Philippine Trench, Pacific Ocean. Electronic Letters on Science and Engineering, vol. 15, no. 3, 2019, pp. 81–94.
- Deutsch C.V., Journel A.G.: GSLIB: Geostatistical software library and user’s guide. 2nd ed. Oxford University Press, 1998.
- Lemenkova P.: Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, vol. 2, 2019, pp. 73–91.
- Lemenkova P.: R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, vol. 2, 2018, pp. 35–42.
- Lemenkova P.: Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics. International Journal of Engineering Technologies, vol. 5, no. 2, 2019, pp. 90–99.
- Lindh P.: Compaction‑ and strength properties of stabilised and unstabilised fine‑grained tills. Lund 2004 [Ph.D. thesis].
- Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. [in:] Poster at the 54th International Conference Environmental & Climate Technologies (Riga Technical University, October 14, 2013. Riga, Latvia). https://doi.org/10.13140/RG.2.2.23026.96963.
- Lemenkova P.: GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, vol. 74 (1), 2020, pp. 19–39.
- Salles C., Poesen J., Govers G.: Statistical and physical analysis of soil detachment by raindrop impact: rain erosivity indices and threshold energy. Water Resources Research, vol. 36, 2000, pp. 2721–2729.
- Udintsev G.B.: Geomorfologiya i tektonika dna Tikhogo okeana. Nauka, Moskva 1972 [Удинцев Г.Б.: Геоморфология и тектоника дна Тихого океана. Наука, Москва 1972].
- Lemenkova P.: Variations in the bathymetry and bottom morphology of the Izu‑Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, vol. 18 (1), 2020, pp. 41–60.
- Litvin V.M.: Morfostruktura dna okeanov. Nedra, Leningrad 1987 [Литвин В.М.: Морфоструктура дна океанов. Недра, Ленинград 1987].
- Lemenkova P.: Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data. Central European Journal of Geography and Sustainable Development, vol. 2, no. 1, 2020, pp. 5–15.
- Lemenkova P.: Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, vol. 45, no. 2, 2019, pp. 57–84.
- Nakanishi M.: Bending‑related topographic structures of the subducting plate in the northwestern Pacific Ocean. [in:] Ogawa Y., Anma R., Dilek Y. (eds.), Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, Springer Science Business Media B.V, Berlin 2011, pp. 1–38.
- Ryan W.B.F., Carbotte S.M., Coplan J.O., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R.: Global Multi‑Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, vol. 10, no. Q03014, 2009. https://doi.org/10.1029/2008GC002332.
- Lemenkova P.: GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, vol. 14, no. 2, 2019, pp. 39–48.
- Tsuru T., Park J.-O., Takahashi N., Kodaira S., Kido Y., Kaneda Y., Kono Y.: Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. Journal of Geophysical Research, vol. 105, 2000, pp. 16403–16413.
- Belousov V.V.: Zemnaya kora i verkhnyaya mantiya okeanov. Nauka, Moskva 1968 [Белоусов В.В.: Земная кора и верхняя мантия океанов. Наука, Москва 1968].
- Lemenkova P.: GMT-based geological mapping and assessment of the bathymetric variations of the Kuril‑Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences, vol. 5, no. 1, 2020, pp. 1–17.
- Miura S., Takahashi N., Nakanishi A., Tsuru T., Kodaira S., Kaneda Y.: Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide‑angle reflection and refraction study. Tectonophysics, vol. 407, 2005, pp. 165–188.
- Lemenkova P.: Topographic surface modelling using raster grid datasets by GMT: example of the Kuril‑Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, vol. 108, 2019, pp. 9–22.
- Kita S., Okada T., Hasegawa A., Nakajima J., Matsuzawa T.: Anomalous deepening of a seismic belt in the upper‑plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: possible evidence for thermal shielding caused by subducted forearc crust materials. Earth and Planetary Science Letters, vol. 290, 2010, pp. 415–426.
- Pushcharovski Yu.M.: Vvedeniye v tektoniku tikhookeanskogo segmenta Zemli. Nauka, Moskva 1972 [Пущаровский Ю.М.: Введение в тектонику тихоокеанского сегмента Земли. Наука, Москва 1972].
- Shipboard Scientific Party: Initial Reports of the Deep Sea Drilling Project. 56. U.S. Government Printing Office, Washington 1980.
- Shipboard Scientific Party: Site 584. [in:] Kagami H., Karig D.E., Coulbourn W.T. (eds.), Initial Reports of Deep Sea Drilling Project, 87. U.S. Government Printing Office, Washington 1986, pp. 16–17.
- Shipboard Scientific Party: Site 1150. [in:] Sacks I.S., Suyehiro K., Acton G.D. (eds.), Proceedings of the Ocean Drilling Program Initial Reports, vol. 186, TX 77845-9547, USA, College Station 2000.
- GRASS Development Team: Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, USA, 2018. https://grass.osgeo.org [access: 1.05.2020].
- Suetova I.A., Ushakova L.A., Lemenkova P.: Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, vol. 4, 2005, pp. 138–142.
- Basista I.: Application of GIS Tools to Describe the Location of New Registered Parcels. Geomatics and Environmental Engineering, vol. 14, no. 1, 2020, pp. 5–13.
- Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, vol. 5, no. 1, 2013, pp. 28–42.
- Lemenkova P.: Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. University of Twente, Enschede 2011 [M.Sc. thesis].
- GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation, 2020. https://gdal.org [access: 2.05.2020].
- GEBCO Compilation Group: GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d‑e053-6c86abc040b9.
- Meyer B., Saltus R., Chulliat A.: EMAG2v3: Earth Magnetic Anomaly Grid (2-arc‑minute resolution). National Centers for Environmental Information, NOAA, 2017. https://doi.org/10.7289/V5H70CVX.
- Wobbe F., Lindeque A., Gohl K.: Total sediment thickness grid of the Southern Pacific Ocean off West Antarctica, links to NetCDF files. Pangea, 2014. https://doi.org/10.1594/PANGAEA.835589.
- Divins D.: Total sediment thickness of the world’s oceans and marginal seas. NOAA National Geophysical Data Center, Boulder 2003.
- Smith W.H.F., Sandwell D.T.: Marine gravity field from declassified Geosat and ERS-1 altimetry. EOS, vol. 76 (46), 1995, pp. F156.
- Lemoine F.G., Smith D.E., Kunz L., Smith R., Pavlis E.C., Pavlis N.K., Klosko S.M., Chinn D.S., Torrence M.H., Williamson R.G., Cox C.M., Rachlin K.E., Wang Y.M., Kenyon S.C., Salman R., Trimmer R., Rapp R.H., Nerem R.S.: The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. [in:] Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia (IAG SYMPOSIA), vol. 117, Springer‑Verlag Berlin Heidelberg, 1997, pp. 461–469.
- PROJ contributors: PROJ coordinate transformation software library. Open Source Geospatial Foundation, 2020. https://proj.org/ [access: 7.05.2020].
- Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F.: Generic mapping tools: Improved version released. Eos, vol. 94, no. 45, 2013, pp. 409–410.
- Lemenkova P.: Geomorphological modelling and mapping of the Peru‑Chile Trench by GMT. Polish Cartographical Review, vol. 51, no. 4, 2019, pp. 181–194.
- Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P., Hillenbrand C.: Swath‑bathymetric mapping. Reports on Polar and Marine Research, vol. 557, 2007, pp. 38–45.
- Lemenkova P.: AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, vol. 65, no. 4, 2019, pp. 1–22.
- Haxby W.F., Karner G.D., LaBrecque J.L., Weissel J.K.: Digital images of combined oceanic and continental data sets and their use in tectonic studies. Eos, vol. 64, no. 52, 1983, pp. 995–1004.
- GRASS Development Team: GRASS GIS 7.8.4dev Reference Manual. https://grass.osgeo.org/grass78/manuals/ [access: 7.05.2020].
- Horn B.K.P.: Hill Shading and the Reflectance Map. Proceedings of the IEEE, vol. 69, no. 1, 1981, pp. 14–47.
- Mitasova H.: Cartographic aspects of computer surface modeling. Slovak Technical University, Bratislava 1985 [Ph.D. thesis].
- Hofierka J., Mitasova H., Neteler M.: Geomorphometry in GRASS GIS. [in:] Hengl T., Reuter H.I. (eds.), Geomorphometry: Concepts, Software, Applications, Developments in Soil Science, vol. 33, Elsevier, 2009, pp. 387–410. http://geomorphometry.org/book [access: 7.05.2020].
- Mirlin Ye.G.: Magnitnyye anomalii okeanov i novaya global’naya tektonika. Nauka, Moskva 1981 [Мирлин Е.Г.: Магнитные аномалии океанов и новая глобальная тектоника. Наука, Москва 1981].
- Kitamura Y., Kanamatsu T., Zhao X.: Structural evolution in accretionary prism toe revealed by magnetic fabric analysis from IODP NanTroSEIZE Expedition 316. Earth and Planetary Science Letters, vol. 292, 2010, pp. 221–230.
- Kobayashi K.: Preliminary report of the Hakuho Maru cruise KH 90-t. Ocean Research Institute, University of Tokyo, Tokyo 1991.
- Yang T., Mishima T., Ujiie K., Chester F.M., Mori J.J., Eguchi N., Toczko S.: Strain decoupling across the décollement in the region of large slip during the 2011 Tohoku‑Oki earthquake from anisotropy of magnetic susceptibility. Earth and Planetary Science Letters, vol. 381, 2013, pp. 31–38.
- Geldmacher J., van den Bogaard P., Heydolph K., Hoernle K.: The age of Earth’s largest volcano: Tamu Massif on Shatsky Rise (northwest Pacific Ocean). International Journal of Earth Sciences, vol. 103, no. 8, 2014, pp. 2351–2357.
- Nakanishi M., Sager W.W., Klaus A.: Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot‑triple junction interaction and oceanic plateau formation. Journal of Geophysical Research: Solid Earth, vol. 104, no. B4, 1999, pp. 7539–7556.
- Kuhn G., Hass C., Kober M., Petitat M., Feigl T., Hillenbrand C.D., Kruger S., Forwick M., Gauger S., Lemenkova P.: The response of quaternary climatic cycles in the South‑East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. [in:] Gohl K. (ed.), Expeditions program, no. 75 ANT XXIII/4, 2006.
- Lemenkova P.: Geophysical modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, vol. 19, no. 2, 2019, pp. 73–94.
- Lemenkova P.: An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, vol. 8, no. 1, 2019, pp. 1–9.
- Levin L.E.: Geologiya osadochnogo chekhla dna morey i okeanov. Nedra, Moskva 1984 [Левин Л.Э.: Геология осадочного чехла дна морей и океанов. Недра, Москва 1984].
- Storti F., McClay K.R.: Influence of syntectonic sedimentation thrust wedges in analogue models. Geology, vol. 23, 1995, pp. 999–1002.
- Tanioka Y., Seno T.: Sediment effect on tsunami generation of the 1986 Sanriku tsunami earthquake. Geophysical Research Letters, vol. 28, 2001, pp. 3389–3392.
- Von Herzen R., Maxwell A.E.: The measurement of thermal conductivity of deep‑sea sediments by a needle‑probe method. Journal of Geophysical Research, vol. 64, 1959, pp. 1557–1563.
- Lemenkova P., Promper C., Glade T.: Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. [in:] Eberhardt E., Froese C., Turner A.K., Leroueil S. (eds.), 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides & Engineered Slopes (NASL). Protecting Society through Improved Understanding, June 2–8, 2012, Banff, AB, Canada, 2012, pp. 279–285.
- Giles P.T.: Geomorphological signatures: classification of aggregated slope unit objects from digital elevation and remote sensing data. Earth Surface Processes and Landforms, vol. 23, 1998, pp. 581–594.
References
Lemenkova P.: GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, vol. 74 (97), no. 1, pp. 19–39.
Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection, 2014, pp. 85–90.
Lemenkova P.: Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, vol. 34, 2019, pp. 51–60.
Schenke H.W., Lemenkova P.: Zur Frage der Meeresboden‑Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora‑See. Hydrographische Nachrichten, vol. 81, 2008, pp. 16–21.
Farquharson C.G., Oldenburg D.W.: A comparison of automatic techniques for estimating the regularization parameter in non‑linear inverse problems. Geophysical Journal International, vol. 156, no. 3, 2004, pp. 411–425.
Lemenkova P.: Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, vol. 27, no. 2, 2019, pp. 72–89.
Cockett R., Kang S., Heagy L.J., Pidlisecky A., Oldenburg D.W.: SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, vol. 85, part A, 2015, pp. 142–154.
Lemenkova P.: Geospatial Analysis by Python and R: Geomorphology of the Philippine Trench, Pacific Ocean. Electronic Letters on Science and Engineering, vol. 15, no. 3, 2019, pp. 81–94.
Deutsch C.V., Journel A.G.: GSLIB: Geostatistical software library and user’s guide. 2nd ed. Oxford University Press, 1998.
Lemenkova P.: Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, vol. 2, 2019, pp. 73–91.
Lemenkova P.: R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, vol. 2, 2018, pp. 35–42.
Lemenkova P.: Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics. International Journal of Engineering Technologies, vol. 5, no. 2, 2019, pp. 90–99.
Lindh P.: Compaction‑ and strength properties of stabilised and unstabilised fine‑grained tills. Lund 2004 [Ph.D. thesis].
Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. [in:] Poster at the 54th International Conference Environmental & Climate Technologies (Riga Technical University, October 14, 2013. Riga, Latvia). https://doi.org/10.13140/RG.2.2.23026.96963.
Lemenkova P.: GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, vol. 74 (1), 2020, pp. 19–39.
Salles C., Poesen J., Govers G.: Statistical and physical analysis of soil detachment by raindrop impact: rain erosivity indices and threshold energy. Water Resources Research, vol. 36, 2000, pp. 2721–2729.
Udintsev G.B.: Geomorfologiya i tektonika dna Tikhogo okeana. Nauka, Moskva 1972 [Удинцев Г.Б.: Геоморфология и тектоника дна Тихого океана. Наука, Москва 1972].
Lemenkova P.: Variations in the bathymetry and bottom morphology of the Izu‑Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, vol. 18 (1), 2020, pp. 41–60.
Litvin V.M.: Morfostruktura dna okeanov. Nedra, Leningrad 1987 [Литвин В.М.: Морфоструктура дна океанов. Недра, Ленинград 1987].
Lemenkova P.: Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data. Central European Journal of Geography and Sustainable Development, vol. 2, no. 1, 2020, pp. 5–15.
Lemenkova P.: Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, vol. 45, no. 2, 2019, pp. 57–84.
Nakanishi M.: Bending‑related topographic structures of the subducting plate in the northwestern Pacific Ocean. [in:] Ogawa Y., Anma R., Dilek Y. (eds.), Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, Springer Science Business Media B.V, Berlin 2011, pp. 1–38.
Ryan W.B.F., Carbotte S.M., Coplan J.O., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R.: Global Multi‑Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, vol. 10, no. Q03014, 2009. https://doi.org/10.1029/2008GC002332.
Lemenkova P.: GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, vol. 14, no. 2, 2019, pp. 39–48.
Tsuru T., Park J.-O., Takahashi N., Kodaira S., Kido Y., Kaneda Y., Kono Y.: Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. Journal of Geophysical Research, vol. 105, 2000, pp. 16403–16413.
Belousov V.V.: Zemnaya kora i verkhnyaya mantiya okeanov. Nauka, Moskva 1968 [Белоусов В.В.: Земная кора и верхняя мантия океанов. Наука, Москва 1968].
Lemenkova P.: GMT-based geological mapping and assessment of the bathymetric variations of the Kuril‑Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences, vol. 5, no. 1, 2020, pp. 1–17.
Miura S., Takahashi N., Nakanishi A., Tsuru T., Kodaira S., Kaneda Y.: Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide‑angle reflection and refraction study. Tectonophysics, vol. 407, 2005, pp. 165–188.
Lemenkova P.: Topographic surface modelling using raster grid datasets by GMT: example of the Kuril‑Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, vol. 108, 2019, pp. 9–22.
Kita S., Okada T., Hasegawa A., Nakajima J., Matsuzawa T.: Anomalous deepening of a seismic belt in the upper‑plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: possible evidence for thermal shielding caused by subducted forearc crust materials. Earth and Planetary Science Letters, vol. 290, 2010, pp. 415–426.
Pushcharovski Yu.M.: Vvedeniye v tektoniku tikhookeanskogo segmenta Zemli. Nauka, Moskva 1972 [Пущаровский Ю.М.: Введение в тектонику тихоокеанского сегмента Земли. Наука, Москва 1972].
Shipboard Scientific Party: Initial Reports of the Deep Sea Drilling Project. 56. U.S. Government Printing Office, Washington 1980.
Shipboard Scientific Party: Site 584. [in:] Kagami H., Karig D.E., Coulbourn W.T. (eds.), Initial Reports of Deep Sea Drilling Project, 87. U.S. Government Printing Office, Washington 1986, pp. 16–17.
Shipboard Scientific Party: Site 1150. [in:] Sacks I.S., Suyehiro K., Acton G.D. (eds.), Proceedings of the Ocean Drilling Program Initial Reports, vol. 186, TX 77845-9547, USA, College Station 2000.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, USA, 2018. https://grass.osgeo.org [access: 1.05.2020].
Suetova I.A., Ushakova L.A., Lemenkova P.: Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, vol. 4, 2005, pp. 138–142.
Basista I.: Application of GIS Tools to Describe the Location of New Registered Parcels. Geomatics and Environmental Engineering, vol. 14, no. 1, 2020, pp. 5–13.
Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P.: Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, vol. 5, no. 1, 2013, pp. 28–42.
Lemenkova P.: Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. University of Twente, Enschede 2011 [M.Sc. thesis].
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation, 2020. https://gdal.org [access: 2.05.2020].
GEBCO Compilation Group: GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d‑e053-6c86abc040b9.
Meyer B., Saltus R., Chulliat A.: EMAG2v3: Earth Magnetic Anomaly Grid (2-arc‑minute resolution). National Centers for Environmental Information, NOAA, 2017. https://doi.org/10.7289/V5H70CVX.
Wobbe F., Lindeque A., Gohl K.: Total sediment thickness grid of the Southern Pacific Ocean off West Antarctica, links to NetCDF files. Pangea, 2014. https://doi.org/10.1594/PANGAEA.835589.
Divins D.: Total sediment thickness of the world’s oceans and marginal seas. NOAA National Geophysical Data Center, Boulder 2003.
Smith W.H.F., Sandwell D.T.: Marine gravity field from declassified Geosat and ERS-1 altimetry. EOS, vol. 76 (46), 1995, pp. F156.
Lemoine F.G., Smith D.E., Kunz L., Smith R., Pavlis E.C., Pavlis N.K., Klosko S.M., Chinn D.S., Torrence M.H., Williamson R.G., Cox C.M., Rachlin K.E., Wang Y.M., Kenyon S.C., Salman R., Trimmer R., Rapp R.H., Nerem R.S.: The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. [in:] Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia (IAG SYMPOSIA), vol. 117, Springer‑Verlag Berlin Heidelberg, 1997, pp. 461–469.
PROJ contributors: PROJ coordinate transformation software library. Open Source Geospatial Foundation, 2020. https://proj.org/ [access: 7.05.2020].
Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F.: Generic mapping tools: Improved version released. Eos, vol. 94, no. 45, 2013, pp. 409–410.
Lemenkova P.: Geomorphological modelling and mapping of the Peru‑Chile Trench by GMT. Polish Cartographical Review, vol. 51, no. 4, 2019, pp. 181–194.
Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P., Hillenbrand C.: Swath‑bathymetric mapping. Reports on Polar and Marine Research, vol. 557, 2007, pp. 38–45.
Lemenkova P.: AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, vol. 65, no. 4, 2019, pp. 1–22.
Haxby W.F., Karner G.D., LaBrecque J.L., Weissel J.K.: Digital images of combined oceanic and continental data sets and their use in tectonic studies. Eos, vol. 64, no. 52, 1983, pp. 995–1004.
GRASS Development Team: GRASS GIS 7.8.4dev Reference Manual. https://grass.osgeo.org/grass78/manuals/ [access: 7.05.2020].
Horn B.K.P.: Hill Shading and the Reflectance Map. Proceedings of the IEEE, vol. 69, no. 1, 1981, pp. 14–47.
Mitasova H.: Cartographic aspects of computer surface modeling. Slovak Technical University, Bratislava 1985 [Ph.D. thesis].
Hofierka J., Mitasova H., Neteler M.: Geomorphometry in GRASS GIS. [in:] Hengl T., Reuter H.I. (eds.), Geomorphometry: Concepts, Software, Applications, Developments in Soil Science, vol. 33, Elsevier, 2009, pp. 387–410. http://geomorphometry.org/book [access: 7.05.2020].
Mirlin Ye.G.: Magnitnyye anomalii okeanov i novaya global’naya tektonika. Nauka, Moskva 1981 [Мирлин Е.Г.: Магнитные аномалии океанов и новая глобальная тектоника. Наука, Москва 1981].
Kitamura Y., Kanamatsu T., Zhao X.: Structural evolution in accretionary prism toe revealed by magnetic fabric analysis from IODP NanTroSEIZE Expedition 316. Earth and Planetary Science Letters, vol. 292, 2010, pp. 221–230.
Kobayashi K.: Preliminary report of the Hakuho Maru cruise KH 90-t. Ocean Research Institute, University of Tokyo, Tokyo 1991.
Yang T., Mishima T., Ujiie K., Chester F.M., Mori J.J., Eguchi N., Toczko S.: Strain decoupling across the décollement in the region of large slip during the 2011 Tohoku‑Oki earthquake from anisotropy of magnetic susceptibility. Earth and Planetary Science Letters, vol. 381, 2013, pp. 31–38.
Geldmacher J., van den Bogaard P., Heydolph K., Hoernle K.: The age of Earth’s largest volcano: Tamu Massif on Shatsky Rise (northwest Pacific Ocean). International Journal of Earth Sciences, vol. 103, no. 8, 2014, pp. 2351–2357.
Nakanishi M., Sager W.W., Klaus A.: Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot‑triple junction interaction and oceanic plateau formation. Journal of Geophysical Research: Solid Earth, vol. 104, no. B4, 1999, pp. 7539–7556.
Kuhn G., Hass C., Kober M., Petitat M., Feigl T., Hillenbrand C.D., Kruger S., Forwick M., Gauger S., Lemenkova P.: The response of quaternary climatic cycles in the South‑East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. [in:] Gohl K. (ed.), Expeditions program, no. 75 ANT XXIII/4, 2006.
Lemenkova P.: Geophysical modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, vol. 19, no. 2, 2019, pp. 73–94.
Lemenkova P.: An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, vol. 8, no. 1, 2019, pp. 1–9.
Levin L.E.: Geologiya osadochnogo chekhla dna morey i okeanov. Nedra, Moskva 1984 [Левин Л.Э.: Геология осадочного чехла дна морей и океанов. Недра, Москва 1984].
Storti F., McClay K.R.: Influence of syntectonic sedimentation thrust wedges in analogue models. Geology, vol. 23, 1995, pp. 999–1002.
Tanioka Y., Seno T.: Sediment effect on tsunami generation of the 1986 Sanriku tsunami earthquake. Geophysical Research Letters, vol. 28, 2001, pp. 3389–3392.
Von Herzen R., Maxwell A.E.: The measurement of thermal conductivity of deep‑sea sediments by a needle‑probe method. Journal of Geophysical Research, vol. 64, 1959, pp. 1557–1563.
Lemenkova P., Promper C., Glade T.: Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. [in:] Eberhardt E., Froese C., Turner A.K., Leroueil S. (eds.), 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides & Engineered Slopes (NASL). Protecting Society through Improved Understanding, June 2–8, 2012, Banff, AB, Canada, 2012, pp. 279–285.
Giles P.T.: Geomorphological signatures: classification of aggregated slope unit objects from digital elevation and remote sensing data. Earth Surface Processes and Landforms, vol. 23, 1998, pp. 581–594.