Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Flash Flood Risk and Climate Analysis in the Extreme South of Algeria (the Case of In-Guezzam City)
Corresponding Author(s) : Rachid Zegait
Geomatics and Environmental Engineering,
Vol. 16 No. 4 (2022): Geomatics and Environmental Engineering
Abstract
Natural risks, particularly flood risk, are a topical subject in Algeria and throughout the world, particularly given the last major catastrophic floods in Sudan (2020) and North Africa. With the development of the climate change phenomenon in the world, risk management is becoming increasingly necessary for all the actors concerned (decision-makers, technicians, and the population) to identify protection issues. In 2018, in the extreme south of Algeria, In-Guezzam City suffered a devastating flood that caused significant damage and loss of human and material resources. More than 100 homes collapsed, and approximately 345 families were displaced. Currently, there is no research work to assess the hydrological situation and the risk of flooding in this region. Therefore, the main purpose of this study is to shed light on the risk of flash floods in the extreme south of Algeria with more specific attention to the August 2018 floods as well as the climate trends over the past 30 years using Mann–Kendall test and Sen’s Slope Estimator. The chosen approach involves a hydrological study and hydrodynamic modeling using HEC-RAS software. This latter allows for simulating floods using statistical methods and creating several regional flood hazard maps.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Walls S.C., Barichivich W.J., Brown M.E.: Drought, Deluge, and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate. Biology, vol. 2(1), 2013, pp. 399–418. https://doi.org/10.3390/biology2010399.
- Madsen H., Lawrence D., Lang M., Martinkova M., Kjeldsene T.R.: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, vol. 519 (part D), 2014, pp. 3634–3650. https://doi.org/10.1016/j.jhydrol.2014.11.003.
- Kastridis A., Stathis D., Sapountzis M., Theodosiou G.: Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land, vol. 11(6), 2022, 911. https://doi.org/10.3390/land11060911.
- Szewrański S., Chruściński J., Van Hoof J., Kazak J.K., Świąder M., Tokarczyk-Dorociak K., Żmuda R.: A location intelligence system for the assessment of pluvial flooding risk and the identification of stormwater pollutant sources from roads in suburbanized areas. Water, vol. 10(6), 2018, 746. https://doi.org/10.3390/w10060746.
- Ritter J., Berenguer M., Park S., Sempere-Torres D.: Real-time assessment of flash flood impacts at pan-European scale: The ReAFFINE method. Journal of Hydrology, vol. 603, 2021, 127022. https://doi.org/10.1016/j.jhydrol.2021.127022.
- Saharia M., Kirstetter P.E., Vergara H., Gourley J.J., Hong Y., Giroud M.: Mapping flash flood severity in the United States. Journal of Hydrometeorology, vol. 18(2), 2017, pp. 397–411. https://doi.org/10.1175/JHM-D-16-0082.1.
- Sapountzis M., Kastridis A., Kazamias A.-P., Karagiannidis A., Nikopoulos P., Lagouvardos K.: Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds. Global NEST Journal, vol. 23(3), 2021, pp. 388–399. https://doi.org/10.30955/gnj.003905.
- Faccini F., Luino F., Paliaga G., Sacchini A., Turconi L., de Jong C.: Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Applied Geography, vol. 98, 2018, pp. 224–241. https://doi.org/10.1016/j.apgeog.2018.07.022.
- Gaume E., Bain V., Bernardara P., Newinger O., Barbuc M., Bateman A., Blaškovičová L. et al.: A compilation of data on European flash floods. Journal of Hydrology, vol. 367(1–2), 2009, pp. 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028.
- Merz B., Kreibich H., Schwarze R., Thieken A.: Review article “Assessment of economic flood damage”. Natural Hazards and Earth System Sciences, vol. 10(8), 2010, pp. 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010.
- Gaume É., Bain V., Borga M.: Les crues éclair en Europe – Le projet de recherches Hydrate. Bulletin des laboratoires des ponts et chaussées (BLPC), no. 277, 2010, pp. 65–73. https://www.ifsttar.fr/collections/BLPCpdfs/blpc_277_65-73.pdf [access: 13.02.2021].
- Lastrada E., Cobos G., Torrijo F.J.: Analysis of Climate Change’s Effect on Flood Risk. Case Study of Reinosa in the Ebro River Basin. Water, vol. 12(4), 2020, 1114. https://doi.org/10.3390/w12041114.
- Diakakis M., Andreadakis E., Nikolopoulos E.I., Spyrou N.I., Gogou M.E., Deligiannakis G., Katsetsiadou N.K. et al.: An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece. International Journal of Disaster Risk Reduction, vol. 33, 2019, pp. 290–309. https://doi.org/10.1016/j.ijdrr.2018.10.015.
- IRIN (Integrated Regional Information Networks): Preparing for floods in West Africa. 2013. http://www.irinnews.org/report/98221/preparing-for-floods-inwest-africa [access: 13.02.2021].
- Moawad M.B., Abdel Aziz A.O., Mamtimin B.: Flash floods in the Sahara: a case study for the 28 January 2013 flood in Qena, Egypt. Geomatics, Natural Hazards and Risk, vol. 7(1), 2016, pp. 215–236. https://doi.org/10.1080/19475705.2014.885467.
- OCHA (United Nations Office for the Coordination of Humanitarian Affairs): Sudan: Situation Report. Last updated: 5 September 2022. https://reports.unocha.org/en/country/sudan [access: 13.02.2021].
- Huet P., Martin X., Prime J., Foine P., Lauraine C., Cannard P.: Retour d’expériences des crues de septembre 2002 dans les départements du Gard, de l’Hérault, du Vaucluse, des bouches du Rhône, de l’Ardèche et de la Drôme. Inspection générale de l’Environnement, Paris 2003.
- Lefrou C., Martin X., Labarthe J., Varret J., Mazière B., Tordjoman R., Feunteun R.: Les crues des 11, 12 et 13 novembre 1999 dans les départements de l’Aude, l’Hérault, les Pyrénées orientales et du Tarn. Inspection générale de l’Environnement, Paris 2000.
- Re M.: Topics annual review: natural catastrophes 2002. Munich Reinsurance Group, Geoscience Research, Munich 2002.
- Nouaceur Z., Laignel B., Turki I.: Changements climatiques au Maghreb: vers des conditions plus humides et plus chaudes sur le littoral algérien? Physio-Géo. Géographie physique et Environnement, vol. 7, 2013, pp. 307–323.
- Kastridis A., Kamperidou V., Stathis D.: Dendroclimatological Analysis of Fir (A. borisii-regis) in Greece in the frame of Climate Change Investigation. Forests, vol. 13(6), 2022, 879. https://doi.org/10.3390/f13060879.
- Laborde J.P.: Carte pluviométrique de l’Algérie du Nord à l’échelle du 1/500000, notice explicative. Projet PNUD/ALG/88/021, Agence Nationale des Ressources hydrauliques, Alger 1993.
- Meddi H., Meddi M.: Variabilité spatiale et temporelle des précipitations du nordouest de l’Algérie. Géographia Technica, no. 2, 2007, pp. 49–55.
- Mohammed T., Al-Amin A.: Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Economic and Environmental Studies, vol. 18(1), 2018, pp. 411–429. https://doi.org/10.25167/ees.2018.45.23.
- Bessaklia H., Ghenim A.N., Megnounif A., Martin-Vide J.: Spatial variability of concentration and aggressiveness of precipitation in North-East of Algeria. Journal of Water and Land Development, vol. 36(1), 2018, pp. 3–15. https://doi.org/10.2478/jwld-2018-0001.
- Merabti A., Meddi M., Martins D.S., Pereira L.S.: Comparing SPI and RDI applied at the local scale as influenced by climate. Water Resources Management, vol. 32(3), 2018, pp. 1071–1085. https://doi.org/10.1007/s11269-017-1855-7.
- Troin J.-F.: Le grand Maghreb (Algérie, Libye, Maroc, Mauritanie, Tunisie): Mondialisation et construction des territoires. Armand Colin, Paris 2006.
- Remini B.: Algeria: the climate is changing, the water is becoming scarce; what to do? LARHYSS journal, no. 41, 2020, pp. 181–221. http://larhyss.net/ojs/index.php/larhyss/article/view/719.
- Bachar K.: L’intégration des dimensions environnementales et sociales dans les pratiques urbaines en Algérie: enjeux et perspectives. Université du Maine, 2015. https://tel.archives-ouvertes.fr/tel-01264701/document [access: 13.02.2021].
- Zegait R., BenSaha H., Addoun T.: Water management and the agricultural development constraints in the Algerian Sahara: Case of the M’Zab Valley. Journal of Water and Land Development, vol. 50 (VI–IX), 2021, pp. 173–179. https://doi.org/10.24425/jwld.2021.138172.
- Ballais J.-L.: Les villes sahariennes et les risques naturels. [in:] Côte M. (ed.), La ville et le désert: Le Bas-Sahara algérien, IREMAM – KARTHALA, 2005, pp. 59–71.
- Dubost D.: Écologie, Aménagement et Développement Agricole des Oasis Algériennes. Centre de Recherche Scientifique et Technique sur les Régions Arides, Biskra 2002 [Ph.D. thesis].
- ONM (Office Nationale de la Météorologie): records listing of climatological parameters in the In-Guezzam region (1988–2019). Tamanrasset, Algeria 2019.
- Dubief J.: Essai sur l’hydrologie superficielle au Sahara. Université d’Alger, 1953 [Ph.D. thesis].
- Mann H.B.: Nonparametric tests against trend. Econometrica, vol. 13, 1945, pp. 245–259. https://doi.org/10.2307/1907187.
- Kendall M.G.: Rank Correlation Methods. Charles Griffin, London 1948.
- Sen P.K.: Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, vol. 63(324), 1968, pp. 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.
- Faye C.: Changement climatiques observés sur le littoral sénégalais (Région de Dakar) depuis 1960: Étude de la variabilité des tendances sur les températures et la pluviométrie. Nature & Technology, C, Environmental Sciences, vol. 20, 2019, pp. 65–78.
- Patra J.P., Mishra A., Singh R., Raghuwanshi N.S.: Detecting rainfall trends in twentieth century (1871–2006) over Ornoa State, India. Climatic Change, vol. 111(3–4), 2012, pp. 801–817. https://doi.org/10.1007/s10584-011-0215-5.
- Sarailidis G., Vasiliades L., Loukas A.: Analysis of streamflow droughts using fixed and variable thresholds. Hydrological Processes. Hydrological Processes, vol. 33(3), 2019, pp. 414–431. https://doi.org/10.1002/hyp.13336.
- Shadmani M., Marofi S., Roknian M.: Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management, vol. 26(1), 2012, pp. 211–224. https://doi.org/10.1007/s11269-011-9913-z.
- Taxak A.K., Murumkar A.R., Arya D.S.: Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather and Climate Extremes, vol. 4, 2014, pp. 50–61. https://doi.org/10.1016/j.wace.2014.04.005.
- Fniguire F., Laftouhi N.-E., Saidi M.E., Zamrane Z., El Himer H., Khalil N.: Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco). Theoretical and Applied Climatology, vol. 130, 2017, pp. 321–330. https://doi.org/10.1007/s00704-016-1873-z.
- Douglas E.M., Vogel R.M., Kroll C.N.: Trends in foods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, vol. 240(1–2), 2000, pp. 90–105. https://doi.org/10.1016/S0022-1694(00)00336-X.
- Da Silva R.M., Santos C.A., Moreira M., Corte-Real J., Silva V.C., Medeiros I.C.: Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, vol. 77(2), 2015, pp. 1205–1221. https://doi.org/10.1007/s11069-015-1644-7.
- Dawood M.: Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Climate Dynamics, vol. 48(3), 2017, pp. 783–797. https://doi.org/10.1007/s00382-016-3110-y.
- Tabari H., Talaee P.H.: Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology, vol. 396(3–4), 2011, pp. 313–320. https://doi.org/10.1016/j.jhydrol.2010.11.034.
- Vu T.M., Raghavan S.V., Liong S.Y., Mishra A.K.: Uncertainties of gridded precipitation observations in characterizing spatio-temporal drought and wetness over Vietnam. International Journal of Climatology, vol. 38(4), 2018, pp. 2067–2081. https://doi.org/10.1002/joc.5317.
- Salarijazi M., Akhon D., Ali A.M., Adib A., Daneshkhah A.: Trend and changepoint detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, vol. 7, 2012, pp. 4540–4552. https://doi.org/10.5897/AJAR12.650.
- Şen Z.: Flood Modeling, Prediction, and Mitigation. Springer, Cham 2018. https://doi.org/10.1007/978-3-319-52356-9.
- Viessman W.: Introduction to Hydrology. 5th ed. Prentice-Hall, Upper Saddle River, New Jersey 2003.
- Wang X., Melesse A.M.: Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the ASAE, vol. 48(4), 2005, pp. 1359–1376. https://doi.org/10.13031/2013.19194.
- Debo T.N., Reese A.J.: Municipal Stormwater Management. 2nd ed. Lewis Publishers, New York 2003.
- Nash J.E.: River flow forecasting through conceptual models: A discussion of principles. Journal of Hydrology, vol. 10(3), 1970, pp. 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- Hapuarachchi H.A.P, Wang Q.J, Pagano T.C.: A review of advances in flash flood forecasting. Hydrological Processes, vol. 25(18), 2011, pp. 2771–2784. https://doi.org/10.1002/hyp.8040.
- Nalbantis I., Efstratiadis A., Rozos E., Kopsiafti M., Koutsoyiannis D.: Holistic versus monomeric strategies for hydrological modeling of human-modified hydrosystems. Hydrology and Earth System Sciences, vol. 15(3), 2011, 743. https://doi.org/10.5194/hess-15-743-2011.
- Hydrognomon: A Database System for the Management of Hydrometeorological Stations and Time Series. Hydrological Time Series Analysis and Processing Software Application. 2012. https://hydrognomon.org [access: 14.08.2022].
- Cunnane C.: Review of Statistical Models for Flood Frequency Estimation: Proceedings of the International Symposium on Flood Frequency and Risk Analyses, 14–17 May 1986, Louisiana State University, Baton Rouge, U.S.A. [in:] Singh V.P. (ed.), Hydrologic Frequency Modeling, D. Reidel Publishing Company, Dordrecht 1987, pp. 49–95. https://doi.org/10.1007/978-94-009-3953-0_4.
- Body K.: Analyse fréquentielle des pluies de l’Algérie: Synthèse régionale: détermination des paramètres principaux par station et leur répartition spatiale. Institut National des Ressources hydrauliques INRH, Constantine 1985.
- SEDAT (Société des etudes diverses & assistance technique): Etude du schéma directeur d’assainissement de la ville d’In-Guezzam, Mission II. Etude Topographique, 2013.
- Brunner G.W.: HEC-RAS River Analysis System Hydraulic Reference Manual (Version 3.1 Edition). U.S. Army Corps of Engineers Hydrologic Engineering Center, Davis, California 2002.
- McKay G.A.: Precipitation. [in:] Gray D.M. (ed.), Handbook on the Principles of Hydrology: With Special Emphasis Directed to Canadian Conditions in the Discussions, Applications and Presentation of Data, Secretariat, Canadian National Committee for the International Hydrological Decade, Ottawa 1970, pp. 12–111.
- Tarek D., Azzedine H., Mouldi S.: Predetermination of Floods by Different Methods. Case of the El Kébir-West Watershed in Ain-Charchar (Northeast Algeria). Synthèse: Revue des Sciences et de la Technologie, vol. 34, 2017, pp. 74–84.
- ABHS (Agence de bassin hydrographique Sahara): Etude du cadastre hydraulique de bassin hydrographique du Sahara, Rapport Mission 1: ressources en eau et en sol. 2006.
- Lahsaini M., Tabyaoui H.: Modelisation Hydraulique Mono Dimensionnel Par HEC RAS, Application Sur L’oued Aggay (Ville De Sefrou). European Scientific Journal, vol. 14, no. 18, 2018, pp. 110–121. https://doi.org/10.19044/esj.2018.v14n18p110.
- ASAL (Agence Spatiale Algérienne): Impacts des inondations dans la région d’In Guezzam – Wilaya de Tamanrasset, à partir de l’imagerie satellitaire à moyenne résolution Alsat-1B et haute résolution Alsat-2. 2018.
References
Walls S.C., Barichivich W.J., Brown M.E.: Drought, Deluge, and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate. Biology, vol. 2(1), 2013, pp. 399–418. https://doi.org/10.3390/biology2010399.
Madsen H., Lawrence D., Lang M., Martinkova M., Kjeldsene T.R.: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, vol. 519 (part D), 2014, pp. 3634–3650. https://doi.org/10.1016/j.jhydrol.2014.11.003.
Kastridis A., Stathis D., Sapountzis M., Theodosiou G.: Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land, vol. 11(6), 2022, 911. https://doi.org/10.3390/land11060911.
Szewrański S., Chruściński J., Van Hoof J., Kazak J.K., Świąder M., Tokarczyk-Dorociak K., Żmuda R.: A location intelligence system for the assessment of pluvial flooding risk and the identification of stormwater pollutant sources from roads in suburbanized areas. Water, vol. 10(6), 2018, 746. https://doi.org/10.3390/w10060746.
Ritter J., Berenguer M., Park S., Sempere-Torres D.: Real-time assessment of flash flood impacts at pan-European scale: The ReAFFINE method. Journal of Hydrology, vol. 603, 2021, 127022. https://doi.org/10.1016/j.jhydrol.2021.127022.
Saharia M., Kirstetter P.E., Vergara H., Gourley J.J., Hong Y., Giroud M.: Mapping flash flood severity in the United States. Journal of Hydrometeorology, vol. 18(2), 2017, pp. 397–411. https://doi.org/10.1175/JHM-D-16-0082.1.
Sapountzis M., Kastridis A., Kazamias A.-P., Karagiannidis A., Nikopoulos P., Lagouvardos K.: Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds. Global NEST Journal, vol. 23(3), 2021, pp. 388–399. https://doi.org/10.30955/gnj.003905.
Faccini F., Luino F., Paliaga G., Sacchini A., Turconi L., de Jong C.: Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Applied Geography, vol. 98, 2018, pp. 224–241. https://doi.org/10.1016/j.apgeog.2018.07.022.
Gaume E., Bain V., Bernardara P., Newinger O., Barbuc M., Bateman A., Blaškovičová L. et al.: A compilation of data on European flash floods. Journal of Hydrology, vol. 367(1–2), 2009, pp. 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028.
Merz B., Kreibich H., Schwarze R., Thieken A.: Review article “Assessment of economic flood damage”. Natural Hazards and Earth System Sciences, vol. 10(8), 2010, pp. 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010.
Gaume É., Bain V., Borga M.: Les crues éclair en Europe – Le projet de recherches Hydrate. Bulletin des laboratoires des ponts et chaussées (BLPC), no. 277, 2010, pp. 65–73. https://www.ifsttar.fr/collections/BLPCpdfs/blpc_277_65-73.pdf [access: 13.02.2021].
Lastrada E., Cobos G., Torrijo F.J.: Analysis of Climate Change’s Effect on Flood Risk. Case Study of Reinosa in the Ebro River Basin. Water, vol. 12(4), 2020, 1114. https://doi.org/10.3390/w12041114.
Diakakis M., Andreadakis E., Nikolopoulos E.I., Spyrou N.I., Gogou M.E., Deligiannakis G., Katsetsiadou N.K. et al.: An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece. International Journal of Disaster Risk Reduction, vol. 33, 2019, pp. 290–309. https://doi.org/10.1016/j.ijdrr.2018.10.015.
IRIN (Integrated Regional Information Networks): Preparing for floods in West Africa. 2013. http://www.irinnews.org/report/98221/preparing-for-floods-inwest-africa [access: 13.02.2021].
Moawad M.B., Abdel Aziz A.O., Mamtimin B.: Flash floods in the Sahara: a case study for the 28 January 2013 flood in Qena, Egypt. Geomatics, Natural Hazards and Risk, vol. 7(1), 2016, pp. 215–236. https://doi.org/10.1080/19475705.2014.885467.
OCHA (United Nations Office for the Coordination of Humanitarian Affairs): Sudan: Situation Report. Last updated: 5 September 2022. https://reports.unocha.org/en/country/sudan [access: 13.02.2021].
Huet P., Martin X., Prime J., Foine P., Lauraine C., Cannard P.: Retour d’expériences des crues de septembre 2002 dans les départements du Gard, de l’Hérault, du Vaucluse, des bouches du Rhône, de l’Ardèche et de la Drôme. Inspection générale de l’Environnement, Paris 2003.
Lefrou C., Martin X., Labarthe J., Varret J., Mazière B., Tordjoman R., Feunteun R.: Les crues des 11, 12 et 13 novembre 1999 dans les départements de l’Aude, l’Hérault, les Pyrénées orientales et du Tarn. Inspection générale de l’Environnement, Paris 2000.
Re M.: Topics annual review: natural catastrophes 2002. Munich Reinsurance Group, Geoscience Research, Munich 2002.
Nouaceur Z., Laignel B., Turki I.: Changements climatiques au Maghreb: vers des conditions plus humides et plus chaudes sur le littoral algérien? Physio-Géo. Géographie physique et Environnement, vol. 7, 2013, pp. 307–323.
Kastridis A., Kamperidou V., Stathis D.: Dendroclimatological Analysis of Fir (A. borisii-regis) in Greece in the frame of Climate Change Investigation. Forests, vol. 13(6), 2022, 879. https://doi.org/10.3390/f13060879.
Laborde J.P.: Carte pluviométrique de l’Algérie du Nord à l’échelle du 1/500000, notice explicative. Projet PNUD/ALG/88/021, Agence Nationale des Ressources hydrauliques, Alger 1993.
Meddi H., Meddi M.: Variabilité spatiale et temporelle des précipitations du nordouest de l’Algérie. Géographia Technica, no. 2, 2007, pp. 49–55.
Mohammed T., Al-Amin A.: Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Economic and Environmental Studies, vol. 18(1), 2018, pp. 411–429. https://doi.org/10.25167/ees.2018.45.23.
Bessaklia H., Ghenim A.N., Megnounif A., Martin-Vide J.: Spatial variability of concentration and aggressiveness of precipitation in North-East of Algeria. Journal of Water and Land Development, vol. 36(1), 2018, pp. 3–15. https://doi.org/10.2478/jwld-2018-0001.
Merabti A., Meddi M., Martins D.S., Pereira L.S.: Comparing SPI and RDI applied at the local scale as influenced by climate. Water Resources Management, vol. 32(3), 2018, pp. 1071–1085. https://doi.org/10.1007/s11269-017-1855-7.
Troin J.-F.: Le grand Maghreb (Algérie, Libye, Maroc, Mauritanie, Tunisie): Mondialisation et construction des territoires. Armand Colin, Paris 2006.
Remini B.: Algeria: the climate is changing, the water is becoming scarce; what to do? LARHYSS journal, no. 41, 2020, pp. 181–221. http://larhyss.net/ojs/index.php/larhyss/article/view/719.
Bachar K.: L’intégration des dimensions environnementales et sociales dans les pratiques urbaines en Algérie: enjeux et perspectives. Université du Maine, 2015. https://tel.archives-ouvertes.fr/tel-01264701/document [access: 13.02.2021].
Zegait R., BenSaha H., Addoun T.: Water management and the agricultural development constraints in the Algerian Sahara: Case of the M’Zab Valley. Journal of Water and Land Development, vol. 50 (VI–IX), 2021, pp. 173–179. https://doi.org/10.24425/jwld.2021.138172.
Ballais J.-L.: Les villes sahariennes et les risques naturels. [in:] Côte M. (ed.), La ville et le désert: Le Bas-Sahara algérien, IREMAM – KARTHALA, 2005, pp. 59–71.
Dubost D.: Écologie, Aménagement et Développement Agricole des Oasis Algériennes. Centre de Recherche Scientifique et Technique sur les Régions Arides, Biskra 2002 [Ph.D. thesis].
ONM (Office Nationale de la Météorologie): records listing of climatological parameters in the In-Guezzam region (1988–2019). Tamanrasset, Algeria 2019.
Dubief J.: Essai sur l’hydrologie superficielle au Sahara. Université d’Alger, 1953 [Ph.D. thesis].
Mann H.B.: Nonparametric tests against trend. Econometrica, vol. 13, 1945, pp. 245–259. https://doi.org/10.2307/1907187.
Kendall M.G.: Rank Correlation Methods. Charles Griffin, London 1948.
Sen P.K.: Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, vol. 63(324), 1968, pp. 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.
Faye C.: Changement climatiques observés sur le littoral sénégalais (Région de Dakar) depuis 1960: Étude de la variabilité des tendances sur les températures et la pluviométrie. Nature & Technology, C, Environmental Sciences, vol. 20, 2019, pp. 65–78.
Patra J.P., Mishra A., Singh R., Raghuwanshi N.S.: Detecting rainfall trends in twentieth century (1871–2006) over Ornoa State, India. Climatic Change, vol. 111(3–4), 2012, pp. 801–817. https://doi.org/10.1007/s10584-011-0215-5.
Sarailidis G., Vasiliades L., Loukas A.: Analysis of streamflow droughts using fixed and variable thresholds. Hydrological Processes. Hydrological Processes, vol. 33(3), 2019, pp. 414–431. https://doi.org/10.1002/hyp.13336.
Shadmani M., Marofi S., Roknian M.: Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management, vol. 26(1), 2012, pp. 211–224. https://doi.org/10.1007/s11269-011-9913-z.
Taxak A.K., Murumkar A.R., Arya D.S.: Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather and Climate Extremes, vol. 4, 2014, pp. 50–61. https://doi.org/10.1016/j.wace.2014.04.005.
Fniguire F., Laftouhi N.-E., Saidi M.E., Zamrane Z., El Himer H., Khalil N.: Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco). Theoretical and Applied Climatology, vol. 130, 2017, pp. 321–330. https://doi.org/10.1007/s00704-016-1873-z.
Douglas E.M., Vogel R.M., Kroll C.N.: Trends in foods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, vol. 240(1–2), 2000, pp. 90–105. https://doi.org/10.1016/S0022-1694(00)00336-X.
Da Silva R.M., Santos C.A., Moreira M., Corte-Real J., Silva V.C., Medeiros I.C.: Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, vol. 77(2), 2015, pp. 1205–1221. https://doi.org/10.1007/s11069-015-1644-7.
Dawood M.: Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Climate Dynamics, vol. 48(3), 2017, pp. 783–797. https://doi.org/10.1007/s00382-016-3110-y.
Tabari H., Talaee P.H.: Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology, vol. 396(3–4), 2011, pp. 313–320. https://doi.org/10.1016/j.jhydrol.2010.11.034.
Vu T.M., Raghavan S.V., Liong S.Y., Mishra A.K.: Uncertainties of gridded precipitation observations in characterizing spatio-temporal drought and wetness over Vietnam. International Journal of Climatology, vol. 38(4), 2018, pp. 2067–2081. https://doi.org/10.1002/joc.5317.
Salarijazi M., Akhon D., Ali A.M., Adib A., Daneshkhah A.: Trend and changepoint detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, vol. 7, 2012, pp. 4540–4552. https://doi.org/10.5897/AJAR12.650.
Şen Z.: Flood Modeling, Prediction, and Mitigation. Springer, Cham 2018. https://doi.org/10.1007/978-3-319-52356-9.
Viessman W.: Introduction to Hydrology. 5th ed. Prentice-Hall, Upper Saddle River, New Jersey 2003.
Wang X., Melesse A.M.: Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the ASAE, vol. 48(4), 2005, pp. 1359–1376. https://doi.org/10.13031/2013.19194.
Debo T.N., Reese A.J.: Municipal Stormwater Management. 2nd ed. Lewis Publishers, New York 2003.
Nash J.E.: River flow forecasting through conceptual models: A discussion of principles. Journal of Hydrology, vol. 10(3), 1970, pp. 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Hapuarachchi H.A.P, Wang Q.J, Pagano T.C.: A review of advances in flash flood forecasting. Hydrological Processes, vol. 25(18), 2011, pp. 2771–2784. https://doi.org/10.1002/hyp.8040.
Nalbantis I., Efstratiadis A., Rozos E., Kopsiafti M., Koutsoyiannis D.: Holistic versus monomeric strategies for hydrological modeling of human-modified hydrosystems. Hydrology and Earth System Sciences, vol. 15(3), 2011, 743. https://doi.org/10.5194/hess-15-743-2011.
Hydrognomon: A Database System for the Management of Hydrometeorological Stations and Time Series. Hydrological Time Series Analysis and Processing Software Application. 2012. https://hydrognomon.org [access: 14.08.2022].
Cunnane C.: Review of Statistical Models for Flood Frequency Estimation: Proceedings of the International Symposium on Flood Frequency and Risk Analyses, 14–17 May 1986, Louisiana State University, Baton Rouge, U.S.A. [in:] Singh V.P. (ed.), Hydrologic Frequency Modeling, D. Reidel Publishing Company, Dordrecht 1987, pp. 49–95. https://doi.org/10.1007/978-94-009-3953-0_4.
Body K.: Analyse fréquentielle des pluies de l’Algérie: Synthèse régionale: détermination des paramètres principaux par station et leur répartition spatiale. Institut National des Ressources hydrauliques INRH, Constantine 1985.
SEDAT (Société des etudes diverses & assistance technique): Etude du schéma directeur d’assainissement de la ville d’In-Guezzam, Mission II. Etude Topographique, 2013.
Brunner G.W.: HEC-RAS River Analysis System Hydraulic Reference Manual (Version 3.1 Edition). U.S. Army Corps of Engineers Hydrologic Engineering Center, Davis, California 2002.
McKay G.A.: Precipitation. [in:] Gray D.M. (ed.), Handbook on the Principles of Hydrology: With Special Emphasis Directed to Canadian Conditions in the Discussions, Applications and Presentation of Data, Secretariat, Canadian National Committee for the International Hydrological Decade, Ottawa 1970, pp. 12–111.
Tarek D., Azzedine H., Mouldi S.: Predetermination of Floods by Different Methods. Case of the El Kébir-West Watershed in Ain-Charchar (Northeast Algeria). Synthèse: Revue des Sciences et de la Technologie, vol. 34, 2017, pp. 74–84.
ABHS (Agence de bassin hydrographique Sahara): Etude du cadastre hydraulique de bassin hydrographique du Sahara, Rapport Mission 1: ressources en eau et en sol. 2006.
Lahsaini M., Tabyaoui H.: Modelisation Hydraulique Mono Dimensionnel Par HEC RAS, Application Sur L’oued Aggay (Ville De Sefrou). European Scientific Journal, vol. 14, no. 18, 2018, pp. 110–121. https://doi.org/10.19044/esj.2018.v14n18p110.
ASAL (Agence Spatiale Algérienne): Impacts des inondations dans la région d’In Guezzam – Wilaya de Tamanrasset, à partir de l’imagerie satellitaire à moyenne résolution Alsat-1B et haute résolution Alsat-2. 2018.