Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Basic Issues of Brandy Industry Waste Conservation
Corresponding Author(s) : Tatevik Yedoyan
Geomatics and Environmental Engineering,
Vol. 17 No. 5 (2023): Geomatics and Environmental Engineering
Abstract
The purpose of the study is to cost-effective and environmentally friendly procedures for the condensation of waste generated from brandy production (distillery dreg) for agricultural use. The experiments were carried out between 2020–2022 under laboratory conditions. It has been shown that in order to reduce the significant cost of distillery dreg transportation, it is advisable to carry out its condensation by means of distillation. Laboratory studies and feasibility calculations revealed that distillery dreg may be condensed by up to five times, allowing for a corresponding reduction in transportation costs, while maintaining its quality indicators. It is suggested that the brandy alcohol distillation process be altered in a way that will allow for the production of condensed distillery dreg substance, with minimal additional energy expenditure and capital investment. The suggested method makes it possible to not only improve the ameliorative conditions of agricultural land, but also to address significant environmental protection issues.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Duque-Acevedo M., Belmonte-Ureña L.J., Cortés-García F.J., CamachoFerre F.: Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, vol. 22, 2020, e00902. https://doi.org/10.1016/j.gecco.2020.e00902.
- Clauser N.M., González G., Mendieta C.M., Kruyeniski J., Area M.C., Vallejos M.E.: Biomass waste as sustainable raw material for energy and fuels. Sustainability, vol. 13(2), 2021, 794. https://doi.org/10.3390/su13020794.
- Saleem M.: Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, vol.8 (2), 2022, e08905. https://doi.org/10.1016/j.heliyon.2022.e08905.
- Xu L., Geelen D.: Developing biostimulants from agro-food and industrial byproducts. Frontiers in Plant Science, vol. 9, 2018, 1567. https://doi.org/10.3389/fpls.2018.01567.
- Dinnar S.H., Islam S., Singh M., Gaba R.: Future-oriented waste management technology for Ward-6, Bogura, Bangladesh – A step towards sustainability. Geomatics and Environmental Engineering, vol. 16(1), 2022, pp. 5–15. https://doi.org/10.7494/geom.2022.16.1.5.
- Puglia D., Pezzolla D., Gigliotti G., Torre L., Bartucca M.L., Del Buono D.: The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability, vol. 13(5), 2021, 2710. https://doi.org/10.3390/su13052710.
- Singh M., Dotaniya M.L., Mishra A., Dotaniya C.K., Regar K.L., Lata M.: Role of Biofertilizers in Conservation Agriculture. [in:] Bisht J., Meena V., Mishra P., Pattanayak A. (eds.), Conservation Agriculture, Springer, Singapore 2016, pp. 113–134. https://doi.org/10.1007/978-981-10-2558-7_4.
- Sattari S.Z., Bouwman A.F., Martinez Rodríguez R., Beusen A.H.W., van Ittersum M.K.: Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nature Communications, vol. 7, 2016, 10696. https://doi.org/10.1038/ncomms10696.
- Larramendy M., Soloneski S. (eds.): Soil Contamination – Threats and Sustainable Solutions. IntechOpen, London 2021. https://doi.org/10.5772/intechopen.87652.
- Ahmed M., Rauf M., Mukhtar Z., Ahmad Saeed N.: Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, vol. 24, 2017, pp. 26983–26987. https://doi.org/10.1007/s11356-017-0589-7.
- Sharma N., Singhvi R.: Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, vol. 10(6), 2017, pp. 675–679. https://doi.org/10.5958/2230-732X.2017.00083.3.
- Bhardwaj D., Ansari M.W., Sahoo R.K., Tuteja N.: Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, vol. 13, 2014, 66. https://doi.org/10.1186/1475-2859-13-66.
- Maina S., Kachrimanidou V., Koutinas A.: A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, vol. 8, 2017, pp. 18–23. https://doi.org/10.1016/j.cogsc.2017.07.007.
- Sherwood J.: The significance of biomass in a circular economy. Bioresource Technology, vol. 300, 2020, 122755. https://doi.org/10.1016/j.biortech.2020.122755.
- Daniel A.I., Fadaka A.O., Gokul A., Bakare O.O., Aina O., Fisher S., Burt A.F. et al.: Biofertilizer: The future of food security and food safety. Microorganisms, vol. 10(6), 2020, 1220. https://doi.org/10.3390/microorganisms10061220.
- Toop T.A., Ward S., Oldfield T., Hull M., Kirby M.E., Theodorou M.K.: AgroCycle – developing a circular economy in agriculture. Energy Procedia, vol. 123, 2020, pp. 76–80. https://doi.org/10.1016/j.egypro.2017.07.269.
- Soceanu A., Dobrinas S., Sirbu A., Manea N., Popescu V.: Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Science of the Total Environment, vol. 759, 2021, 143543. https://doi.org/10.1016/j.scitotenv.2020.143543.
- Ranta S., Rastogi S., Kumar R.: Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, vol. 290, 2021, 112544. https://doi.org/10.1016/j.jenvman.2021.112544.
- Mosse K.P.M., Patti A.F., Christen E.W., Cavagnaro T.R.: Review: Winery wastewater quality and treatment options in Australia. Australian Journal of Grape and Wine Research, vol. 17, 2011, pp. 111–122. https://doi.org/10.1111/j.1755-0238.2011.00132.x.
- Mikucka W., Zielińska M.: Distillery stillage: Characteristics, treatment, and valorization. Applied Biochemistry and Biotechnology, vol. 192(3), 2020, pp. 770–793. https://doi.org/10.1007/s12010-020-03343-5.
- Diaz C.: France exports 95% of its cognac, and the US and China keep buying more of it. Yahoo Finance, 21. 01.2022 https://finance.yahoo.com/news/franceexports-95-cognac-us-153927297.html [access: 16.06.2022].
- Papinyan V.A., Kazaryan U.K.: Ispol’zovaniye bardy dlya melioratsii sodovykhsolontsov-solonchakov Ararat·skoy ravniny. [in:] Chetvertaya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Ekologiya regionov”, Vladimirskiy gosudarstvennyy universitet, Vladimir 2012, pp. 62–71 [Папинян В.А., Казарян У.К.: Использование барды для мелиорации содовых солонцов-солончаков Араратской равнины. [в:] Четвертая Международная научно-практическая конференция «Экология регионов», Владимирский государственный университет, Владимир 2012, c. 62–71].
- Sahakyan S.V., Petevotyan R.A., Yedoyan T.V.: Efficient technology for wastewater treatment and desalination: Case study. [in:] Rybnov E., Akimov P., Khalvashi M., Vardanyan E. (eds.), Contemporary Problems of Architecture and Construction. Proceedings of the 12th International Conference on Contemporary Problems of Architecture and Construction (ICCPAC 2020), 25-26 November 2020, Saint Petersburg, Russia, CRC Press, Balkema, Leiden 2021, pp. 385–389.
- Bezuneh T.T., Kebede E.M.: Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. Journal of Environment and Earth Science, vol. 5(11), 2015, pp. 41–47. https://www.researchgate.net/publication/282752574.
- FitzGibbon F., Singh D., McMullan G., Marchant R.: The effect of phenolic acids and molasses spent wash concentrations of distillery wastewater remediation by fungi. Process Biochemistry, vol. 33(8), 1998, pp. 799–803. https://doi.org/10.1016/S0032-9592(98)00050-8.
- Kharayat Y.: Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences, vol. 9(2), 2012, 69–91. https://doi.org/10.1080/1943815X.2012.688056.
- Charter on Corporate Responsibility for Environmental Protection. Action Points for 17 Categories of Industries. Central Pollution Control, Board Ministry of Environment and Forests, India, March 2003. https://www.indiansugar.com/PDFS/CREP-2003-FullText.pdf [access: 17.03.2023].
- Fillaudeau L., Bories A., Decloux M.: Brewing, winemaking and distilling: an overview of wastewater treatment and utilization schemes. [in:] Klemeš J., Smith R., Kim J.-K. (eds.), Handbook of Water and Energy Management in Food Processing, Woodhead Limited, Cambridge, UK, 2008, pp. 929–995. https://doi.org/10.1533/9781845694678.6.929.
- Mikucka W., Zielinska M., Bulkowska K., Witonska I.: Subcritical water extraction of bioactive phenolic compounds from distillery stillage. Journal of Environmental Management, vol. 318, 2022, 115548. https://doi.org/10.1016/j.jenvman.2022.115548.
- España-Gamboa E., Mijangos-Cortes J., Barahona-Perez L., DominguezMaldonado J., Hernández-Zarate G., Alzate-Gaviria L.: Vinasses: characterization and treatments. Waste Management & Research, vol. 29(12), 2011, pp. 1235–1250. https://doi.org/10.1177/0734242X10387313.
- Gurreri L., Tamburini A., Cipollina A., Micale G.: Electrodialysis Applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, vol. 10(7), 2020, 146. https://doi.org/10.3390/membranes10070146.
- Maleta B., Shevchenko A., Bedryk O., Kiss A.: Pilot-scale studies of process intensification by cyclic distillation. AIChE Journal, vol. 61(8), 2015, pp. 2581–2591. https://doi.org/10.1002/aic.14827.
- Ullah R., Khraisheh M., Esteves R.J., McLeskey J.T., AlGhouti M., Gad-elHak M., Vahedi Tafreshi H.: Energy efficiency of direct contact membrane distillation. Desalination, vol. 433, 2018, pp. 56–67. https://doi.org/10.1016/j.desal.2018.01.025.
- Sweeten J.M., Lawhon J.T., Schelling G.T., Gillespie T.R., Coble Ch.G.: Removal and utilization of ethanol stillage constituents. Energy in Agriculture, vol. 1, 1981, pp. 331–345. https://doi.org/10.1016/0167-5826(81)90029-2.
- Kuznetsov I.N., Ruchay N.S.: Analiz mirovogo opyta v tekhnologii pererabotki poslespirtovoy bardy. Trudy BGTU: Seriya IV. Khimiya, tekhnologiya organicheskikh veshestv i biotekhnologiya, vypusk XVIII, 2010, pp. 294–301 [Кузнецов И.Н., Ручай Н.С.: Анализ мирового опыта в технологии переработки послеспиртовой барды. Труды БГТУ: Серия IV. Химия, технология органических вешеств и биотехнология, выпуск XVIII, 2010, с. 294–301]. https://elib.belstu.by/handle/123456789/38839.
- Halvorsen I.J., Skogestad S.: Energy efficient distillation. Journal of Natural Gas Science and Engineering, vol. 3(4), 2011, pp. 571–580. https://doi.org/10.1016/j.jngse.2011.06.002.
- Iakovlieva A., Boichenko S., Lejda K., Vovk O., Shkilniuk I.: Vacuum distillation of rapeseed oil esters for production of jet fuel bio-additives. Procedia Engineering, vol. 187, 2017, pp. 363–370. https://doi.org/10.1016/j.proeng.2017.04.387.
- Mineyev V.G., Sychev V.G., Gamzikov G.P., Sheudzhen A.Kh., Agafonov Ye.V., Belous N.M., Yegorov V.S. et al.: Agrokhimiya. VNIIA im. D.N.Pryanishnikova, Moskva 2017 [Минеев В.Г., Сычев В.Г., Гамзиков Г.П., Шеуджен А.Х., Агафонов Е.В., Белоус Н.М., Егоров В.С et al.: Агрохимия. ВНИИА им. Д.Н.Прянишникова, Москва 2017].
- Spaho N., Dürr P., Grba S., Velagić-Habul E., Blesić M.: Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. Journal of Institute of Brewing, vol. 119(1–2), 2013, pp. 48–56. https://doi.org/10.1002/jib.62.
- Wang S.-P., Zhong X.-Z., Wang T.-T., Sun Z.-Y., Tang Y.-Q., Kida K.: Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process: The effects of initial pH adjustment. Bioresource Technology, vol. 245(A), 2017, pp. 778–785. https://doi.org/10.1016/j.biortech.2017.09.051.
- Stuckrath C., Worrell E.: Energy Efficiency and Cost Saving Opportunities. An ENERGY STAR® Guide for Energy and Plant Managers. United States Environmental Protectioon Agency, 2022.
References
Duque-Acevedo M., Belmonte-Ureña L.J., Cortés-García F.J., CamachoFerre F.: Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, vol. 22, 2020, e00902. https://doi.org/10.1016/j.gecco.2020.e00902.
Clauser N.M., González G., Mendieta C.M., Kruyeniski J., Area M.C., Vallejos M.E.: Biomass waste as sustainable raw material for energy and fuels. Sustainability, vol. 13(2), 2021, 794. https://doi.org/10.3390/su13020794.
Saleem M.: Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, vol.8 (2), 2022, e08905. https://doi.org/10.1016/j.heliyon.2022.e08905.
Xu L., Geelen D.: Developing biostimulants from agro-food and industrial byproducts. Frontiers in Plant Science, vol. 9, 2018, 1567. https://doi.org/10.3389/fpls.2018.01567.
Dinnar S.H., Islam S., Singh M., Gaba R.: Future-oriented waste management technology for Ward-6, Bogura, Bangladesh – A step towards sustainability. Geomatics and Environmental Engineering, vol. 16(1), 2022, pp. 5–15. https://doi.org/10.7494/geom.2022.16.1.5.
Puglia D., Pezzolla D., Gigliotti G., Torre L., Bartucca M.L., Del Buono D.: The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability, vol. 13(5), 2021, 2710. https://doi.org/10.3390/su13052710.
Singh M., Dotaniya M.L., Mishra A., Dotaniya C.K., Regar K.L., Lata M.: Role of Biofertilizers in Conservation Agriculture. [in:] Bisht J., Meena V., Mishra P., Pattanayak A. (eds.), Conservation Agriculture, Springer, Singapore 2016, pp. 113–134. https://doi.org/10.1007/978-981-10-2558-7_4.
Sattari S.Z., Bouwman A.F., Martinez Rodríguez R., Beusen A.H.W., van Ittersum M.K.: Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nature Communications, vol. 7, 2016, 10696. https://doi.org/10.1038/ncomms10696.
Larramendy M., Soloneski S. (eds.): Soil Contamination – Threats and Sustainable Solutions. IntechOpen, London 2021. https://doi.org/10.5772/intechopen.87652.
Ahmed M., Rauf M., Mukhtar Z., Ahmad Saeed N.: Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, vol. 24, 2017, pp. 26983–26987. https://doi.org/10.1007/s11356-017-0589-7.
Sharma N., Singhvi R.: Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, vol. 10(6), 2017, pp. 675–679. https://doi.org/10.5958/2230-732X.2017.00083.3.
Bhardwaj D., Ansari M.W., Sahoo R.K., Tuteja N.: Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, vol. 13, 2014, 66. https://doi.org/10.1186/1475-2859-13-66.
Maina S., Kachrimanidou V., Koutinas A.: A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, vol. 8, 2017, pp. 18–23. https://doi.org/10.1016/j.cogsc.2017.07.007.
Sherwood J.: The significance of biomass in a circular economy. Bioresource Technology, vol. 300, 2020, 122755. https://doi.org/10.1016/j.biortech.2020.122755.
Daniel A.I., Fadaka A.O., Gokul A., Bakare O.O., Aina O., Fisher S., Burt A.F. et al.: Biofertilizer: The future of food security and food safety. Microorganisms, vol. 10(6), 2020, 1220. https://doi.org/10.3390/microorganisms10061220.
Toop T.A., Ward S., Oldfield T., Hull M., Kirby M.E., Theodorou M.K.: AgroCycle – developing a circular economy in agriculture. Energy Procedia, vol. 123, 2020, pp. 76–80. https://doi.org/10.1016/j.egypro.2017.07.269.
Soceanu A., Dobrinas S., Sirbu A., Manea N., Popescu V.: Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Science of the Total Environment, vol. 759, 2021, 143543. https://doi.org/10.1016/j.scitotenv.2020.143543.
Ranta S., Rastogi S., Kumar R.: Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, vol. 290, 2021, 112544. https://doi.org/10.1016/j.jenvman.2021.112544.
Mosse K.P.M., Patti A.F., Christen E.W., Cavagnaro T.R.: Review: Winery wastewater quality and treatment options in Australia. Australian Journal of Grape and Wine Research, vol. 17, 2011, pp. 111–122. https://doi.org/10.1111/j.1755-0238.2011.00132.x.
Mikucka W., Zielińska M.: Distillery stillage: Characteristics, treatment, and valorization. Applied Biochemistry and Biotechnology, vol. 192(3), 2020, pp. 770–793. https://doi.org/10.1007/s12010-020-03343-5.
Diaz C.: France exports 95% of its cognac, and the US and China keep buying more of it. Yahoo Finance, 21. 01.2022 https://finance.yahoo.com/news/franceexports-95-cognac-us-153927297.html [access: 16.06.2022].
Papinyan V.A., Kazaryan U.K.: Ispol’zovaniye bardy dlya melioratsii sodovykhsolontsov-solonchakov Ararat·skoy ravniny. [in:] Chetvertaya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Ekologiya regionov”, Vladimirskiy gosudarstvennyy universitet, Vladimir 2012, pp. 62–71 [Папинян В.А., Казарян У.К.: Использование барды для мелиорации содовых солонцов-солончаков Араратской равнины. [в:] Четвертая Международная научно-практическая конференция «Экология регионов», Владимирский государственный университет, Владимир 2012, c. 62–71].
Sahakyan S.V., Petevotyan R.A., Yedoyan T.V.: Efficient technology for wastewater treatment and desalination: Case study. [in:] Rybnov E., Akimov P., Khalvashi M., Vardanyan E. (eds.), Contemporary Problems of Architecture and Construction. Proceedings of the 12th International Conference on Contemporary Problems of Architecture and Construction (ICCPAC 2020), 25-26 November 2020, Saint Petersburg, Russia, CRC Press, Balkema, Leiden 2021, pp. 385–389.
Bezuneh T.T., Kebede E.M.: Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. Journal of Environment and Earth Science, vol. 5(11), 2015, pp. 41–47. https://www.researchgate.net/publication/282752574.
FitzGibbon F., Singh D., McMullan G., Marchant R.: The effect of phenolic acids and molasses spent wash concentrations of distillery wastewater remediation by fungi. Process Biochemistry, vol. 33(8), 1998, pp. 799–803. https://doi.org/10.1016/S0032-9592(98)00050-8.
Kharayat Y.: Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences, vol. 9(2), 2012, 69–91. https://doi.org/10.1080/1943815X.2012.688056.
Charter on Corporate Responsibility for Environmental Protection. Action Points for 17 Categories of Industries. Central Pollution Control, Board Ministry of Environment and Forests, India, March 2003. https://www.indiansugar.com/PDFS/CREP-2003-FullText.pdf [access: 17.03.2023].
Fillaudeau L., Bories A., Decloux M.: Brewing, winemaking and distilling: an overview of wastewater treatment and utilization schemes. [in:] Klemeš J., Smith R., Kim J.-K. (eds.), Handbook of Water and Energy Management in Food Processing, Woodhead Limited, Cambridge, UK, 2008, pp. 929–995. https://doi.org/10.1533/9781845694678.6.929.
Mikucka W., Zielinska M., Bulkowska K., Witonska I.: Subcritical water extraction of bioactive phenolic compounds from distillery stillage. Journal of Environmental Management, vol. 318, 2022, 115548. https://doi.org/10.1016/j.jenvman.2022.115548.
España-Gamboa E., Mijangos-Cortes J., Barahona-Perez L., DominguezMaldonado J., Hernández-Zarate G., Alzate-Gaviria L.: Vinasses: characterization and treatments. Waste Management & Research, vol. 29(12), 2011, pp. 1235–1250. https://doi.org/10.1177/0734242X10387313.
Gurreri L., Tamburini A., Cipollina A., Micale G.: Electrodialysis Applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, vol. 10(7), 2020, 146. https://doi.org/10.3390/membranes10070146.
Maleta B., Shevchenko A., Bedryk O., Kiss A.: Pilot-scale studies of process intensification by cyclic distillation. AIChE Journal, vol. 61(8), 2015, pp. 2581–2591. https://doi.org/10.1002/aic.14827.
Ullah R., Khraisheh M., Esteves R.J., McLeskey J.T., AlGhouti M., Gad-elHak M., Vahedi Tafreshi H.: Energy efficiency of direct contact membrane distillation. Desalination, vol. 433, 2018, pp. 56–67. https://doi.org/10.1016/j.desal.2018.01.025.
Sweeten J.M., Lawhon J.T., Schelling G.T., Gillespie T.R., Coble Ch.G.: Removal and utilization of ethanol stillage constituents. Energy in Agriculture, vol. 1, 1981, pp. 331–345. https://doi.org/10.1016/0167-5826(81)90029-2.
Kuznetsov I.N., Ruchay N.S.: Analiz mirovogo opyta v tekhnologii pererabotki poslespirtovoy bardy. Trudy BGTU: Seriya IV. Khimiya, tekhnologiya organicheskikh veshestv i biotekhnologiya, vypusk XVIII, 2010, pp. 294–301 [Кузнецов И.Н., Ручай Н.С.: Анализ мирового опыта в технологии переработки послеспиртовой барды. Труды БГТУ: Серия IV. Химия, технология органических вешеств и биотехнология, выпуск XVIII, 2010, с. 294–301]. https://elib.belstu.by/handle/123456789/38839.
Halvorsen I.J., Skogestad S.: Energy efficient distillation. Journal of Natural Gas Science and Engineering, vol. 3(4), 2011, pp. 571–580. https://doi.org/10.1016/j.jngse.2011.06.002.
Iakovlieva A., Boichenko S., Lejda K., Vovk O., Shkilniuk I.: Vacuum distillation of rapeseed oil esters for production of jet fuel bio-additives. Procedia Engineering, vol. 187, 2017, pp. 363–370. https://doi.org/10.1016/j.proeng.2017.04.387.
Mineyev V.G., Sychev V.G., Gamzikov G.P., Sheudzhen A.Kh., Agafonov Ye.V., Belous N.M., Yegorov V.S. et al.: Agrokhimiya. VNIIA im. D.N.Pryanishnikova, Moskva 2017 [Минеев В.Г., Сычев В.Г., Гамзиков Г.П., Шеуджен А.Х., Агафонов Е.В., Белоус Н.М., Егоров В.С et al.: Агрохимия. ВНИИА им. Д.Н.Прянишникова, Москва 2017].
Spaho N., Dürr P., Grba S., Velagić-Habul E., Blesić M.: Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. Journal of Institute of Brewing, vol. 119(1–2), 2013, pp. 48–56. https://doi.org/10.1002/jib.62.
Wang S.-P., Zhong X.-Z., Wang T.-T., Sun Z.-Y., Tang Y.-Q., Kida K.: Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process: The effects of initial pH adjustment. Bioresource Technology, vol. 245(A), 2017, pp. 778–785. https://doi.org/10.1016/j.biortech.2017.09.051.
Stuckrath C., Worrell E.: Energy Efficiency and Cost Saving Opportunities. An ENERGY STAR® Guide for Energy and Plant Managers. United States Environmental Protectioon Agency, 2022.