Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Incorporating Inter-System Bias in Single Point Positioning Based on GPS, Galileo and BeiDou System
Corresponding Author(s) : Dawid Łukasz Kwaśniak
Geomatics and Environmental Engineering,
Vol. 15 No. 1 (2021): Geomatics and Environmental Engineering
Abstract
The increasing number of satellites provides new opportunities. In the experiment presented in this paper, the Single Point Positioning technique is tested. Data from four different receivers were used in the tests. The GPS, Galileo and BeiDou System observations were collected over a three day long observational session. The computational process was carried out using self‑made software and point positions were obtained as the result. The goal of the test was to verify the impact of the Inter‑System Bias (ISB) on the final results. For this purpose, two cases of processing data were compared: with estimating ISB and without taking into account this parameter. In the paper the formulas of the mathematical models used are presented and, in both of the considered cases, a combination of GPS, BDS and Galileo was used. The results show that in the case where the ISB was taken into account, the accuracy and precision in the positioning was much better than in the approach where the ISB was not considered. Estimating the ISB allows for more precise positioning results to be obtained for car-navigation or GIS purposes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Cai C., Luo X., Liu Z., Xiao Q.: Galileo Signal and Positioning Performance Analysis Based on Four IOV Satellites. The Journal of Navigation, vol. 67(5), 2014, pp. 810–824. https://doi.org/10.1017/S037346331400023X.
- Paziewski J., Wielgosz P.: Assessment of GPS+Galileo and multi‑frequency Galileo single‑epoch precise positioning with network corrections. GPS Solutions, vol. 18, 2013, pp. 571–579. https://doi.org/10.1007/s10291‑013‑0355‑3.
- Odolinski R., Teunissen P.J.G., Odijk D.: First combined COMPASS/BeiDou‑2 and GPS positioning results in Australia. Part I: singlereceiver and relative code-only positioning. Journal of Spatial Science, vol. 59, issue 1, 2014, pp. 3–24. https://doi.org/10.1080/14498596.2013.840865.
- Cai C., Gao Y., Pan L., Zhu J.: Precise point positioning with quad‑constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, vol. 56, issue 1, 2015, pp. 133–143. https://doi.org/10.1016/j.asr.2015.04.001.
- Cai C., He C., Santerre R., Pan L., Cui X., Zhu J.: A comparative analysis of meas‑ urement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, vol. 48, issue 349, 2016, pp. 287–295. https://doi.org/10.1179/1752270615Y.0000000032.
- Ochieng W., Sauer K., Cross P., Sheridan K., Iliffe J., Lannelongue S., Ammour N., Petit K.: Potential Performance Levels of a Combined Galileo GPS Navigation System. The Journal of Navigation, vol. 54, issue 2, 2001, pp. 185–197. https://doi.org/10.1017/S037346330100131X.
- Li X., Ge X., Dai X., Ren M., Fritsche M., Wickert J., Schuh H.: Accuracy and reliability of multi‑GNSS real‑time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, vol. 89, 2015, pp. 607–635. https://doi.org/10.1007/s00190‑015‑0802‑8.
- Li X., Zhang X., Ren X., Fritsche M., Wickert J., Schuh H.: Precise posi‑ tioning with current multi‑constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, vol. 5, 2015, 8328. https://doi.org/10.1038/srep08328.
- Tegedor J., Øvstedal O., Vigen E.: Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. Journal of Geodetic Science, vol. 4, 2014, pp. 65–73.
- Pan L., Cai C., Santerre R., Zhang X.: Performance evaluation of single‑frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Survey Review, vol. 49, issue 354, 2016, pp. 197–205. https://doi.org/10.1080/00396265.2016.1151628.
- Pan L., Zhang X. Li X., Li X., Lu C., Liu J., Wang Q.: Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo. Advances in Space Research, vol. 63, issue 9, 2019, pp. 2696–2710. https://doi.org/10.1016/j.asr.2017.07.029.
- Baldysz Z., Nykiel G., Figurski M.: Analysis of the impact of Galileo observationsnon the tropospheric delays estimation. [in:] 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017, pp. 65–71. https://doi.org/10.13140/RG.2.2.19456.64001.
- Nykiel G., Figurski M.: Impact of Galileo Observations on the Position and Ambiguities Estimation of GNSS Reference Stations. [in:] 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017, pp. 225–231. https://doi.org/10.1109/BGC.Geomatics.2017.11.
- Cai C., Gao Y., Pan L., Dai W.: An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions. Advances in Space Research, vol. 54, issue 5, 2014, pp. 818–829. https://doi.org/10.1016/j.asr.2013.02.019.
- Angrisano A., Gaglione S., Gioia C., Massaro M., Troisi S.: Benefit of the NeQuick Galileo Version in GNSS Single‑Point Positioning. International Journal of Nav‑ igation and Observation, 2013, 302947. https://doi.org/10.1155/2013/302947.
- Leick A., Rapoport L., Tatarnikov D.: GPS Satellite Surveying. 4th ed. John Wiley & Sons, Hoboken 2015.
- Chu F‑Y., Yang M.: GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions, vol. 18, 2013, pp. 263–272. https://doi.org/10.1007/s10291‑013‑0327‑7.
- Lee Y.C.: Analysis of range and position comparison methods as ameans to provide GPS integrity in the user receiver. [in:] Institute of Navigation, Annual Meeting, 42nd, Seattle, WA, June 24–26, 1986, Proceedings, Institute of Navigation, Washington 1986, pp. 1–4.
- Zhang X., Wu M., Liu W., Li X., Yu S., Lu C., Wickert J.: Initial assessment of the COMPASS/BeiDou‑3: new‑generation navigation signals. Journal of Geodesy, vol. 91, 2017, pp. 1225–1240. https://doi.org/10.1007/s00190‑017‑1020‑3.
- He L., Ge M., Wang J., Wickert J.; Schuh H..: Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System. Sensors, vol. 13(3), 2013, pp. 2911–2928. https://doi.org/10.3390/s130302911.
- Deng C., Tang W., Liu J., Shi C.: Reliable single‑epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions, vol. 18, 2014, pp. 375–386. https://doi.org/10.1007/s10291‑013‑0337‑5.
- Montenbruck O., Hauschild A., Steigenberger P., Hugentobler U., Teunissen P., Nakamura S.: Initial assessment of the COMPASS/BeiDou‑2 regional navigation satellite system. GPS Solutions, vol. 17, 2013, pp. 211–222. https://doi.org/10.1007/s10291‑012‑0272‑x.
- Kwaśniak D., Cellmer S., Nowel K.: Precise positioning in Europe using the Galileo and GPS combination. [in:] The 10th International Conference: Environmental engineering: 10th ICEE: Selected papers, Vilnius Gediminas Technical University Press, Vilnius 2017. https://doi.org/10.3846/enviro.2017.210.
- Parkinson B., Axelrad P.: Autonomous GPS integrity monitoring using the pseudorange residual. Navigation: Journal of the Institute of Navigation, vol. 35(2), 1988, pp. 255–274.
- Urquhart L., Santos M., Nievinski F., Bohm J.: Generation and Assessment of VMF1 Type Grids Using North American Numerical Weather Models. [in:] Rizos Ch., Willis P. (eds.), Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 – July 2, 2011, International Association of Geodesy Symposia, vol. 139, Springer Berlin Heidelberg, 2016, pp. 3–9.
References
Cai C., Luo X., Liu Z., Xiao Q.: Galileo Signal and Positioning Performance Analysis Based on Four IOV Satellites. The Journal of Navigation, vol. 67(5), 2014, pp. 810–824. https://doi.org/10.1017/S037346331400023X.
Paziewski J., Wielgosz P.: Assessment of GPS+Galileo and multi‑frequency Galileo single‑epoch precise positioning with network corrections. GPS Solutions, vol. 18, 2013, pp. 571–579. https://doi.org/10.1007/s10291‑013‑0355‑3.
Odolinski R., Teunissen P.J.G., Odijk D.: First combined COMPASS/BeiDou‑2 and GPS positioning results in Australia. Part I: singlereceiver and relative code-only positioning. Journal of Spatial Science, vol. 59, issue 1, 2014, pp. 3–24. https://doi.org/10.1080/14498596.2013.840865.
Cai C., Gao Y., Pan L., Zhu J.: Precise point positioning with quad‑constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, vol. 56, issue 1, 2015, pp. 133–143. https://doi.org/10.1016/j.asr.2015.04.001.
Cai C., He C., Santerre R., Pan L., Cui X., Zhu J.: A comparative analysis of meas‑ urement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, vol. 48, issue 349, 2016, pp. 287–295. https://doi.org/10.1179/1752270615Y.0000000032.
Ochieng W., Sauer K., Cross P., Sheridan K., Iliffe J., Lannelongue S., Ammour N., Petit K.: Potential Performance Levels of a Combined Galileo GPS Navigation System. The Journal of Navigation, vol. 54, issue 2, 2001, pp. 185–197. https://doi.org/10.1017/S037346330100131X.
Li X., Ge X., Dai X., Ren M., Fritsche M., Wickert J., Schuh H.: Accuracy and reliability of multi‑GNSS real‑time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, vol. 89, 2015, pp. 607–635. https://doi.org/10.1007/s00190‑015‑0802‑8.
Li X., Zhang X., Ren X., Fritsche M., Wickert J., Schuh H.: Precise posi‑ tioning with current multi‑constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, vol. 5, 2015, 8328. https://doi.org/10.1038/srep08328.
Tegedor J., Øvstedal O., Vigen E.: Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. Journal of Geodetic Science, vol. 4, 2014, pp. 65–73.
Pan L., Cai C., Santerre R., Zhang X.: Performance evaluation of single‑frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Survey Review, vol. 49, issue 354, 2016, pp. 197–205. https://doi.org/10.1080/00396265.2016.1151628.
Pan L., Zhang X. Li X., Li X., Lu C., Liu J., Wang Q.: Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo. Advances in Space Research, vol. 63, issue 9, 2019, pp. 2696–2710. https://doi.org/10.1016/j.asr.2017.07.029.
Baldysz Z., Nykiel G., Figurski M.: Analysis of the impact of Galileo observationsnon the tropospheric delays estimation. [in:] 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017, pp. 65–71. https://doi.org/10.13140/RG.2.2.19456.64001.
Nykiel G., Figurski M.: Impact of Galileo Observations on the Position and Ambiguities Estimation of GNSS Reference Stations. [in:] 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017, pp. 225–231. https://doi.org/10.1109/BGC.Geomatics.2017.11.
Cai C., Gao Y., Pan L., Dai W.: An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions. Advances in Space Research, vol. 54, issue 5, 2014, pp. 818–829. https://doi.org/10.1016/j.asr.2013.02.019.
Angrisano A., Gaglione S., Gioia C., Massaro M., Troisi S.: Benefit of the NeQuick Galileo Version in GNSS Single‑Point Positioning. International Journal of Nav‑ igation and Observation, 2013, 302947. https://doi.org/10.1155/2013/302947.
Leick A., Rapoport L., Tatarnikov D.: GPS Satellite Surveying. 4th ed. John Wiley & Sons, Hoboken 2015.
Chu F‑Y., Yang M.: GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions, vol. 18, 2013, pp. 263–272. https://doi.org/10.1007/s10291‑013‑0327‑7.
Lee Y.C.: Analysis of range and position comparison methods as ameans to provide GPS integrity in the user receiver. [in:] Institute of Navigation, Annual Meeting, 42nd, Seattle, WA, June 24–26, 1986, Proceedings, Institute of Navigation, Washington 1986, pp. 1–4.
Zhang X., Wu M., Liu W., Li X., Yu S., Lu C., Wickert J.: Initial assessment of the COMPASS/BeiDou‑3: new‑generation navigation signals. Journal of Geodesy, vol. 91, 2017, pp. 1225–1240. https://doi.org/10.1007/s00190‑017‑1020‑3.
He L., Ge M., Wang J., Wickert J.; Schuh H..: Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System. Sensors, vol. 13(3), 2013, pp. 2911–2928. https://doi.org/10.3390/s130302911.
Deng C., Tang W., Liu J., Shi C.: Reliable single‑epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions, vol. 18, 2014, pp. 375–386. https://doi.org/10.1007/s10291‑013‑0337‑5.
Montenbruck O., Hauschild A., Steigenberger P., Hugentobler U., Teunissen P., Nakamura S.: Initial assessment of the COMPASS/BeiDou‑2 regional navigation satellite system. GPS Solutions, vol. 17, 2013, pp. 211–222. https://doi.org/10.1007/s10291‑012‑0272‑x.
Kwaśniak D., Cellmer S., Nowel K.: Precise positioning in Europe using the Galileo and GPS combination. [in:] The 10th International Conference: Environmental engineering: 10th ICEE: Selected papers, Vilnius Gediminas Technical University Press, Vilnius 2017. https://doi.org/10.3846/enviro.2017.210.
Parkinson B., Axelrad P.: Autonomous GPS integrity monitoring using the pseudorange residual. Navigation: Journal of the Institute of Navigation, vol. 35(2), 1988, pp. 255–274.
Urquhart L., Santos M., Nievinski F., Bohm J.: Generation and Assessment of VMF1 Type Grids Using North American Numerical Weather Models. [in:] Rizos Ch., Willis P. (eds.), Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 – July 2, 2011, International Association of Geodesy Symposia, vol. 139, Springer Berlin Heidelberg, 2016, pp. 3–9.