Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
High-Resolution Lithology Detection Using Sentinel-2A, ALOS PRISM L1B Images, and Support-Vector Machines in Tagragra d’Akka Inlier of Western Anti-Atlas, Morocco
Corresponding Author(s) : Yassine Hammoud
Geomatics and Environmental Engineering,
Vol. 19 No. 1 (2025): Geomatics and Environmental Engineering
Abstract
Geological mapping faces substantial challenges due to inaccessible terrains, labor-intensive field methods, and potential interpretative errors. This study proposes an innovative approach that leverages automatic lithology classification using multispectral Sentinel-2A (10 m) and high-resolution panchromatic ALOS PRISM L1B (2.5 m) images. Applied to the Tagragra d’Akka inlier of the Anti-Atlas region, the methodology enhances spatial resolution through pansharpening, followed by unsupervised segmentation. The segmented images are classified using support vector machines (SVMs) (supervised learning algorithms) to distinguish the lithological units. Achieving an 86% overall accuracy and an 84% kappa coefficient, the approach demonstrated robust performance and surpassed conventional techniques. The integration of machine learning and remote sensing offers a promising frontier for geological mapping – particularly in regions like the Tagragra d’Akka inlier. This study marks a significant advancement in automating lithological mapping, with implications for geological research, resource management, and hazard assessment. Automated techniques in geological cartography significantly enhance mapping accuracy and efficiency. Future studies should explore additional data sources and machine-learning algorithms to refine lithological classification and validate these methods across diverse geological settings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Farina P., Catani F., Colombo D., Fumagalli A., Kukavicic M., Marks F., Moretti S.: Remote sensing: A tool for landslide investigations at a basin scale. Geophysical Research Abstracts, vol. 7, 2005, pp. 10157–10168.
- Al-Rawashdeh S., Saleh B., Hamzah M.: The use of remote sensing technology in geological investigation and mineral detection in El Azraq-Jordan. Cybergeo: European Journal of Geography – Cybergeo: Revue Européenne de Géographie, no. 358, 2006. https://doi.org/10.4000/cybergeo.2856.
- Zhang X., Li P.: Lithological mapping from hyperspectral data by improved use of spectral angle mapper. International Journal of Applied Earth Observation and Geoinformation, vol. 31, 2014, pp. 95–109. https://doi.org/10.1016/j.jag.2014.03.007.
- Masoumi F., Eslamkish T., Abkar A.A., Honarmand M., Harris J.R.: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. Journal of African Earth Sciences, vol. 129, 2017, pp. 445–457. https://doi.org/10.1016/j.jafrearsci.2017.01.028.
- Serbouti I., Raji M., Hakdaoui M., Pradhan B., Lee C.-W., Alamri A.M.: Pixel and object-based machine learning classification schemes for lithological mapping enhancement of Semi-Arid regions using Sentinel-2A imagery: A case study of the southern Moroccan Meseta. IEEE Access, vol. 9, 2021, pp. 119262–119278. https://doi.org/10.1109/ACCESS.2021.3107294.
- Shahin M.A., Jaksa M.B., Maier H.R.: Artificial neural network applications in geotechnical engineering. Australian Geomechanics, vol. 36(1), 2001, pp. 49–62.
- Shahin M.A., Jaksa M.B.: Neural network prediction of pullout capacity of marquee ground anchors. Computers and Geotechnics, vol. 32(1), 2005, pp. 153–163. https://doi.org/10.1016/j.compgeo.2005.02.003.
- Das S.K., Basudhar P.K.: Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, vol. 100(3–4), 2008, pp. 142–145. https://doi.org/10.1016/j.enggeo.2008.03.001.
- Azamathulla H.M., Guven A., Demir Y.K.: Linear genetic programming to scour below submerged pipeline. Ocean Engineering, vol. 38(8–9), 2011, pp. 995–1000. https://doi.org/10.1016/j.oceaneng.2011.03.005.
- Garg A., Tai K., Gupta A.K.: A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica, vol. 49(5), 2014, pp. 1193–1209. https://doi.org/10.1007/s11012-013-9873-x.
- Hajaj S., El Harti A., Jellouli A., Pour A.B., Mnissar Himyari S., Hamzaoui A., Hashim M.: Evaluating the Performance of Machine Learning and Deep Learning Techniques to HyMap Imagery for Lithological Mapping in a Semi-Arid Region: Case Study from Western Anti-Atlas, Morocco. Minerals, vol. 13(6), 2023, 766. https://doi.org/10.3390/min13060766.
- El-Omairi M.A., El Garouani A.: A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. Heliyon, 2023, vol. 9(9), e20168. https://doi.org/10.1016/j.heliyon.2023.e20168.
- Santos D., Cardoso-Fernandes J., Lima A., Müller A., Brönner M., Teodoro A.C.: Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF pegmatites in Tysfjord, Norway. Remote Sensing, vol. 14(15), 2022, 3532. https://doi.org/10.3390/rs14153532.
- Cardoso-Fernandes J., Teodoro A.C., Lima A., Roda-Robles E.: Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites. Remote Sensing, vol. 12(14), 2020, 2319. https://doi.org/10.3390/rs12142319.
- Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L.: Machine learning in geosciences and remote sensing. Geoscience Frontiers, vol. 7(1), 2016, pp. 3–10. https://doi.org/10.1016/j.gsf.2015.07.003.
- Rowan L.C., Mars J.C.: Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, vol. 84(3), 2003, pp. 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X.
- Massironi M., Bertoldi L., Calafa P., Visonà D., Bistacchi A., Giardino C., Schiavo A.: Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere, vol. 4(4), 2008, pp. 736–759. https://doi.org/10.1130/GES00161.1.
- Harvey A.S., Fotopoulos G.: Geological mapping using machine learning algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B8, 2016, pp. 423–430. https://doi.org/10.5194/isprs-archives-XLI-B8-423-2016.
- Serbouti I., Raji M., Hakdaoui M., El Kamel F., Pradhan B., Gite S., Alamri A., Maulud K.N.A., Dikshit A.: Improved lithological map of large complex Semi-Arid regions using spectral and textural datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sensing, vol. 14(21), 2022, 5498. https://doi.org/10.3390/rs14215498.
- Drury S.A.: Image Interpretation in Geology. Allen & Unwin, London 1987.
- Ninomiya Y., Fu B., Cudahy T.J.: Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, vol. 99(1–2), 2005, pp. 127–139. https://doi.org/10.1016/j.rse.2005.06.009.
- Gad S., Kusky T.: ASTER spectral ratioing for lithological mapping in the ArabianNubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, vol. 11(3), 2007, pp. 326–335. https://doi.org/10.1016/j.gr.2006.02.010.
- Leverington D.W., Moon W.M.: Landsat-TM-based discrimination of lithological units associated with the Purtuniq ophiolite, Quebec, Canada. Remote Sensing, vol. 4(5), 2012, pp. 1208–1231. https://doi.org/10.3390/rs4051208.
- Black M., Riley T.R., Ferrier G., Fleming A.H., Fretwell P.T.: Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica. Remote Sensing of Environment, vol. 176, 2016, pp. 225–241. https://doi.org/10.1016/j.rse.2016.01.022.
- Rowan L.C., Schmidt R.G., Mars J.C.: Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, vol. 104(1), 2006, pp. 74–87. https://doi.org/10.1016/j.rse.2006.05.014.
- Kratt C., Calvin W.M., Coolbaugh M.F.: Mineral mapping in the Pyramid Lake basin: Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensing of Environment, vol. 114(10), 2010, pp. 2297–2304. https://doi.org/10.1016/j.rse.2010.05.006.
- Zhang T., Yi G., Li H., Wang Z., Tang J., Zhong K., Li Y., Wang Q., Bie X.: Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry cu-au deposit, Tibetan Plateau, China. Remote Sensing, vol. 8(11), 2016, 890. https://doi.org/10.3390/rs8110890.
- Vaughan R.G., Hook S.J., Calvin W.M., Taranik J.V.: Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sensing of Environment, vol. 99(1–2), 2005, pp. 140–158. https://doi.org/10.1016/j.rse.2005.04.030.
- Vicente L.E., de Souza Filho C.R.: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, vol. 115(8), 2011, pp. 1824–1836. https://doi.org/10.1016/j.rse.2011.02.023.
- Govil H., Gill N., Rajendran S., Santosh M., Kumar S.: Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geology Reviews, vol. 92, 2018, pp. 271–283. https://doi.org/10.1016/j.oregeorev.2017.11.023.
- Gemusse U., Cardoso-Fernandes J., Lima A., Teodoro A.: Identification of pegmatites zones in Muiane and Naipa (Mozambique) from Sentinel-2 images, using band combinations, band ratios, PCA and supervised classification. Remote Sensing Applications: Society and Environment, vol. 32, 2023, 101022. https://doi.org/10.1016/j.rsase.2023.101022.
- Tagwai M.G., Jimoh O.A., Shehu S.A., Zabidi H.: Application of GIS and remote sensing in mineral exploration: current and future perspectives. World Journal of Engineering, vol. 21(3), 2023, pp. 487–502. https://doi.org/10.1108/WJE-09-2022-0395.
- Kruse F.A., Dietz J.B.: Integration of diverse remote sensing data sets for geologic mapping and resource exploration, [in:] Curran R.J., Smith J.A., Watson K. (eds.), Earth and Atmospheric Remote Sensing: 2–4 April 1991 Orlando, Florida, Proceedings of SPIE, vol. 1492, SPIE – The International Society for Optical Engineering, 1991, pp. 326–337. https://doi.org/10.1117/12.45859.
- Al-Anazi A., Gates I.D.: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, vol. 114(3–4), 2010, pp. 267–277. https://doi.org/10.1016/j.enggeo.2010.05.005.
- Sebtosheikh M.A., Salehi A.: Lithology prediction by support vector classifiers using inverted seismic attributes data and petrophysical logs as a new approach and investigation of training data set size effect on its performance in a heterogeneous carbonate reservoir. Journal of Petroleum Science and Engineering, vol. 134, 2015, pp. 143–149. https://doi.org/10.1016/j.petrol.2015.08.001.
- Deng C., Pan H., Fang S., Konaté A.A., Qin R.: Support vector machine as an alternative method for lithology classification of crystalline rocks. Journal of Geophysics and Engineering, vol. 14(2), 2017, pp. 341–349. https://doi.org/10.1088/1742-2140/aa5b5b.
- Bhattacharya S., Carr T.R., Pal M.: Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA. Journal of Natural Gas Science and Engineering, vol. 33, 2016, pp. 1119–1133. https://doi.org/10.1016/j.jngse.2016.04.055.
- Xie Y., Zhu C., Zhou W., Li Z., Liu X., Tu M.: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, vol. 160, 2018, pp. 182–193. https://doi.org/10.1016/j.petrol.2017.10.028.
- Sun J., Li Q., Chen M., Ren L., Huang G., Li C., Zhang Z.: Optimization of models for a rapid identification of lithology while drilling – a win-win strategy based on machine learning. Journal of Petroleum Science and Engineering, vol. 176, 2019, pp. 321–341. https://doi.org/10.1016/j.petrol.2019.01.006.
- Merembayev T., Yunussov R., Yedilkhan A.: Machine learning algorithms for classification geology data from well logging, [in:] 2018 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 2018, IEEE, Piscataway 2018, pp. 206–212. https://doi.org/10.1109/ICECCO.2018.8634775.
- Dev V.A., Eden M.R.: Evaluating the boosting approach to machine learning for formation lithology classification. Computer Aided Chemical Engineering, vol. 44, 2018, pp. 1465–1470. https://doi.org/10.1016/B978-0-444-64241-7.50239-1.
- Dev V.A., Eden M.R.: Formation lithology classification using scalable gradient boosted decision trees. Computers & Chemical Engineering, vol. 128, 2019, pp. 392–404. https://doi.org/10.1016/j.compchemeng.2019.06.001.
- Raeesi M., Moradzadeh A., Ardejani F.D., Rahimi M.: Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks. Journal of Petroleum Science and Engineering, vol. 82–83, 2012, pp. 151–165. https://doi.org/10.1016/j.petrol.2012.01.012.
- Ouadfeul S.-A., Aliouane L.: Lithofacies classification using the multilayer perceptron and the self-organizing neural networks, [in:] Huang T., Zeng Z., Li C., Leung C.S. (eds.), Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12–15, 2012, Proceedings, Part V, Lecture Notes in Computer Science, vol. 7667, Springer, Berlin, Heidelberg 2012, pp. 737–744. https://doi.org/10.1007/978-3-642-34500-5_87.
- Zych M., Stachura G., Hanus R., Szabó N.P.: Application of artificial neural networks in identification of geological formations on the basis of well logging data – a comparison of computational environments’ efficiency, [in:] Hanus R., Mazur D., Kreischer C. (eds.), Methods and Techniques of Signal Processing in Physical Measurements, MSM 2018, Lecture Notes in Electrical Engineering, vol. 548, Springer, Cham 2019, pp. 416–422. https://doi.org/10.1007/978-3-030-11187-8_34.
- Salehi S.M., Honarvar B.: Automatic identification of formation lithology from well log data: a machine learning approach. Journal of Petroleum Science Research, vol. 3(2), pp. 73–82, 2014.
- Li Z., Kang Y., Feng D., Wang X.-M., Lv W., Chang J., Zheng W.X.: Semisupervised learning for lithology identification using Laplacian support vector machine. Journal of Petroleum Science and Engineering, vol. 195, 2020, 107510. https://doi.org/10.1016/j.petrol.2020.107510.
- Ikenne M., Mortaji A., Gasquet D., Stussi J.M.: Les filons basiques des boutonnières du Bas Drâa et de la Tagragra d’Akka: Témoins des distensions néoprotérozoïques de l’Anti-Atlas occidental (Maroc). Journal of African Earth Sciences, vol. 25(2), 1997, pp. 209–223. https://doi.org/10.1016/S0899-5362(97)00099-7.
- Benbrahim M., Aissa M., Zouhair M.: Synthèse géologique et métallogénique du gisement aurifère d’Iourirne (Boutonnière de Tagragra d’Akka, Anti-Atlas occidental, Maroc). International Journal of Innovation and Applied Studies, vol. 24(1), 2018, pp. 428–438.
- Maacha L.: Études métallogéniques et géophysiques des minéralisations cobaltifères et cuprifères de Bou-Azzer El Graara, Anti-Atlas Maroc. Université Cadi Ayyad, Marrakech 2013 [Ph.D. thesis, unpublished].
- Adiri Z., Lhissou R., Maacha L., Jilali A., Talbi E.H., Jellouli A., Chakouri M.: Comparison of ASTER GDEM3, SRTM3, NASADEM, TanDEM-X90, AW3D30, and ALOS PALSAR data with TanDEM-X12: A case study of Tagragra of Akka inlier, Moroccan Anti-Atlas. Arabian Journal of Geosciences, vol. 15(21), 2022, 1654. https://doi.org/10.1007/s12517-022-10885-x.
- Zouhair M., Marignac C.: Les paléocirculations fluides dans la Tagragra d’Akka (Anti-Atlas, Maroc): Etude combinée des inclusions fluides et de la déformation des quartz aurifères: conséquences pour la métallogénie de l’or. Institut National Polytechnique de Lorraine, Nancy 1992 [Ph.D. thesis].
- Benbrahim M., Aissa M.: Le gisement aurifère d’Iourirn (boutonnière de Tagragra d’Akka, Anti-Atlas occidental, Maroc): Un exemple de minéralisation mésothermale dans les formations paléoprotérozoïques. Bulletin de l’Institut Scientifique, no. 27, 2005, pp. 41–46.
- Boya T.K.L.D.: Pétrologie, métallogénie et géochimie des altérations hydrothermales des gisements aurifères d’Angarf, Irbiben et Ifarar (boutonnière Tagragra d’Akka, Anti-Atlas, Maroc). Université Ibn Tofail, Kénitra 2014 [Ph.D. thesis].
- Potherat P., Ait Kassi M., Nicot P., Macaudiere J., Marignac C.: Structural evolution of gold-bearing quartz veins in the Precambrian exposures of the Tagragra d’Akka (western Anti-Atlas, Morocco), [in:] Pagel M., Leroy J. (eds.), Source, Transport and Deposition of Metals: Proceedings of the 25 Years SGA Anniversary Meeting, Nancy, 30 August–3 September, 1991, Balkema, Rotterdam 1991, pp. 477–480.
- Choubert G.: Histoire géologique du Précambrien de l’Anti-Atlas. Tome 1. Éditions du Service Géologique du Maroc, Rabat 1963.
- Mortaji A.: La boutonnière précambrienne de Tagragra d’Akka (Anti-Atlas occidental, Maroc): Pétrologie et géochimie des granitoïdes, filons basiques et métamorphites associées. l’Université Henri Poincaré, Nancy 1989 [Ph.D. thesis].
- Michard A.: Eléments de Géologie Marocaine. Éditions du Service Géologique du Maroc, Rabat 1976.
- Hassenforder B., Roger J., Baudin T., Chalot-Prat F., Gasquet D., Berrahma A., Chèvremont P., Marquer D., Razin P., Benlakhdim: Carte géologique de Sidi Bou’addi (Maroc) au 1/50 000, avec notice explicative. Notes et Mémoires du Service Géologique, no. 414, Editions du Service Géologique du Maroc, Rabat 2001.
- Roger J., Gasquet D., Baudin T., Chalot-Prat F., Hassenforder B., Marquer I.D., Chèvremont P., Berrahma A., Destombes J., Razin P., Benlakhdim A.: Carte géologique de Tamazrar (Maroc) à 1/50 000, avec notice explicative. Notes et Mémoires du Service Géologique, no. 415, Editions du Service Géologique du Maroc, Rabat 2001.
- Gasquet D., Chevremont P., Baudin T., Chalot-Prat F., Guerrot C., Cocherie A., Roger J., Hassenforder B., Cheilletz A.: Polycyclic magmatism in the Tagragra d’Akka and Kerdous-Tafeltast inliers (Western Anti-Atlas, Morocco). Journal of African Earth Sciences, vol. 39(3–5), 2004, pp. 267–275. https://doi.org/10.1016/j.jafrearsci.2004.07.062.
- Boya T.K.L.-D., Gnanzou A., Hervà K.J.L., Adingra P.K.M., Goulihi D.D., M’Rabet S.: Petrography and geochemistry for proposal of geodynamic model for the Irbiben granite in Tagragra d’Akka inlier, (western Anti-Atlas, Morocco). Journal of Geoscience, Engineering, Environment, and Technology, vol. 7(3), 2022, pp. 102–109. https://doi.org/10.25299/jgeet.2022.7.3.10275.
- Hassenforder B.: La tectonique panafricaine et varisque de l’Anti-Atlas dans le massif du Kerdous (Maroc). Université Louis Pasteur, Strasbourg 1987 [Ph.D. thesis].
- Marignac C.: Contribution à l’étude du potentiel aurifère des Tagragra d’Akka et de Tata. Rapport inédit, BRPM, Rabat 1990.
- ESA Sentinel-2 Team: GMES Sentinel-2 mission requirements document. European Space Agency, 2007. https://citeseerx.ist.psu.edu/document?repid=rep1&-type=pdf&doi=0f3f3987fa4ec266f76efbe180b1ebb9129a4dc8 [access: 5.10.2024].
- European Space Agency: ALOS PRISM L1B, Version 1.0. https://earth.esa.int/eogateway/catalog/alos-prism-l1b [access: 3.02.2024].
- Ozendi M., Topan H., Cam A., Bayık Ç.: Pan sharpening quality investigation of Turkish in-operation remote sensing satellites: Applications with RASAT and GÖKTÜRK-2 images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W1, 2016, pp. 131–135. https://doi.org/10.5194/isprs-archives-XLII-2-W1-131-2016.
- Kaplan G.: Sentinel-2 pan sharpening – comparative analysis. Proceedings, vol. 2(7), 2018, 345. https://doi.org/10.3390/ecrs-2-05158.
- Pohl C., van Genderen J.L.: Multisensor fusion: optimization and operationalization for mapping applications, [in:] Kadar I., Libby V. (eds.), Signal Processing, Sensor Fusion, and Target Recognition III: 4–8 April 1994, Orlando, Florida, United States, Proceedings of SPIE, vol. 2232, SPIE – The International Society for Optical Engineering, 1994, pp. 12–25. https://doi.org/10.1117/12.177750.
- Sheffield C.: Selecting band combinations from multi spectral data. Photogrammetric Engineering and Remote Sensing, vol. 51(6), 1985, pp. 681–687.
- Pohl C., van Genderen J.L.: Review article. Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, vol. 19(5), 1998, pp. 823–854. https://doi.org/10.1080/014311698215748.
- Bakioğlu O.B., Topan H., Özendi M., Cam A.: Pansharpening of RASAT and GÖKTÜRK-2 images via high pass filter. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-4/W6, 2017, pp. 27–29. https://doi.org/10.5194/isprs-archives-XLII-4-W6-27-2017.
- Vrabel J., Doraiswamy P., Stern A.: Application of hyperspectral imagery resolution improvement for site-specific farming, [in:] XXII FIG International Congress: ACSM-ASPRS Conference and Technology Exhibition 2002 congress/conference proceedings: April 19–26, 2002, Washington, D.C., American Society for Photogrammetry and Remote Sensing, Washington 2002.
- Vrabel J.C., Doraiswamy P., McMurtrey James E. III, Stern A.: Demonstration of the accuracy of improved-resolution hyperspectral imagery, [in:] Shen S.S., Lewis P.E. (eds.), Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII: 23–27 April 2012, Baltimore, Maryland, United States, Proceedings of SPIE, vol. 4725, SPIE – The International Society for Optical Engineering, 2002, pp. 556–567. https://doi.org/10.1117/12.478790.
- Despini F., Teggi S., Baraldi A.: Methods and metrics for the assessment of pan-sharpening algorithms, [in:] Bruzzone L. (ed.), Image and Signal Processing for Remote Sensing XX: 22–24 September 2014, Amsterdam, Netherlands, Proceedings of SPIE, vol. 9244, SPIE – The International Society for Optical Engineering, 2014. https://doi.org/10.1117/12.2067316.
- Gupta R.P.: Remote Sensing Geology. 3rd ed., Springer, Berlin, Heidelberg 2018. https://doi.org/10.1007/978-3-662-55876-8.
- Jolliffe I.T., Cadima J.: Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374(2065), 2016, 20150202. https://doi.org/10.1098/rsta.2015.0202.
- Fung T., LeDrew E.: Application of principal components analysis to change detection. Photogrammetric Engineering and Remote Sensing, vol. 53(12), 1987, pp. 1649–1658.
- Ready P., Wintz P.: Information extraction, SNR improvement, and data compression in multispectral imagery. IEEE Transactions on Communications, vol. 21(10), 1973, pp. 1123-1131. https://doi.org/10.1109/TCOM.1973.1091550.
- Palaniswami C., Upadhyay A.K., Maheswarappa H.P.: Spectral mixture analysis for subpixel classification of coconut. Current Science, vol. 91(12), 2006, pp. 1706–1711. http://www.jstor.org/stable/24094026.
- Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, vol. 8(7), 2015, pp. 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015.
- Dubey S.K., Vijay S., Pratibha: A review of image segmentation using clustering methods. International Journal of Applied Engineering Research, vol. 13(5), 2018, pp. 2484–2489.
- Chen Z., Qi Z., Meng F., Cui L., Shi Y.: Image segmentation via improving clustering algorithms with density and distance. Procedia Computer Science, vol. 55, 2015, pp. 1015–1022. https://doi.org/10.1016/j.procs.2015.07.096.
- Pal N.R., Pal S.K.: A review on image segmentation techniques. Pattern Recognition, vol. 26(9), 1993, pp. 1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J.
- Fukunaga K., Hostetler L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, vol. 21(1), 1975, pp. 32–40. https://doi.org/10.1109/TIT.1975.1055330.
- Cheng Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17(8), 1995, pp. 790–799. https://doi.org/10.1109/34.400568.
- Fei W., Zhu S.: Mean shift clustering-based moving object segmentation in the H.264 compressed domain. IET Image Processing, vol. 4(1), 2010, pp. 11–18. https://doi.org/10.1049/iet-ipr.2009.0038.
- Liu C., Zhou A., Zhang Q., Zhang G.: Adaptive image segmentation by using mean-shift and evolutionary optimisation. IET Image Processing, vol. 8(6), 2014, pp. 327–333. https://doi.org/10.1049/iet-ipr.2013.0195.
- Soysal Ö.M., Schneider H., Shrestha A., Guempel C.D., Li P., Donepudi H., Kondoju N.K., Sekeroglu K.: Zonal statistics to identify hot-regions of traffic accidents, [in:] Arabnia H.R., Deligiannidis L., Marsh A., Solo A.M..G. (eds.), Proceedings of the 2012 International Conference on Modeling, Simulation & Visualization Methods MSV 2012: WORLDCOMP’12, July 16–19, 2012, Las Vegas, Nevada, USA, pp. 287–293. http://worldcomp-proceedings.com/proc/p2012/MSV6182.pdf [access: 23.02.2024].
- Jog S., Dixit M.: Supervised classification of satellite images, [in:] 2016 Conference on Advances in Signal Processing (CASP), Pune, India, IEEE, Piscataway 2016, pp. 93–98. https://doi.org/10.1109/CASP.2016.7746144.
- Perumal K., Bhaskaran R.: Supervised classification performance of multispectral images. Journal of Computing, vol. 2(2), 2010, pp. 124–129. https://doi.org/10.48550/arXiv.1002.4046.
- Bachri I., Hakdaoui M., Raji M., Teodoro A.C., Benbouziane A.: Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, vol. 8(6), 2019, 248. https://doi.org/10.3390/ijgi8060248.
- European Space Agency: Sentinel Application Platform (SNAP). Paris, 2023. https://earth.esa.int/eogateway/tools/snap.
- Xavier Pons J.C., Sanjurjo-Vílchez J.: Some notes on the divergence and transformed divergence formulae in the remote sensing literature. Remote Sensing Letters, vol. 15(11), 2024, pp. 1187–1194. https://doi.org/10.1080/2150704X.2024.2420286.
- Gholamy A., Kreinovich V., Kosheleva O.: Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, vol. 11(2), 2018, pp. 105–111. https://doi.org/10.6148/IJITAS.201806_11(2).0003.
- Vapnik V.: The Nature of Statistical Learning Theory. Springer, New York 1995.
- Grizonnet M., Michel J., Poughon V., Inglada J., Savinaud M., Cresson R.: Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data, Software and Standards, vol. 2, 2017, 15. https://doi.org/10.1186/s40965-017-0031-6.
- Luque A., Carrasco A., Martín A., de las Heras A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, vol. 91, 2019, pp. 216–231. https://doi.org/10.1016/j.patcog.2019.02.023.
- Grandini M., Bagli E., Visani G.: Metrics for multi-class classification: An overview. arXiv preprint arXiv:2008.05756, 2020. https://doi.org/10.48550/arXiv.2008.05756.
- Landis J.R., Koch G.G.: The measurement of observer agreement for categorical data. Biometrics, vol. 33(1), 1977, pp. 159–174. https://doi.org/10.2307/2529310.
- Zengeya F.M., Mutanga O., Murwira A.: Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. International Journal of Applied Earth Observation and Geoinformation, vol. 21, 2013, pp. 513–524. https://doi.org/10.1016/j.jag.2012.07.008.
- Chen Y., Wang Y., Zhang F., Dong Y., Song Z., Liu G.: Remote sensing for lithology mapping in vegetation-covered regions: Methods, challenges, and opportunities. Minerals, vol. 13(9), 2023, 1153. https://doi.org/10.3390/min13091153.
- Dong Y., Yang Z., Liu Q., Zuo R., Wang Z.: Fusion of GaoFen-5 and Sentinel-2B data for lithological mapping using vision transformer dynamic graph convolutional network. International Journal of Applied Earth Observation and Geoinformation, vol. 129, 2024, 103780. https://doi.org/10.1016/j.jag.2024.103780.
- Karimzadeh S., Tangestani M.H.: Evaluating the VNIR-SWIR datasets of WorldView-3 for lithological mapping of a metamorphic-igneous terrain using support vector machine algorithm; a case study of Central Iran. Advances in Space Research, vol. 68(6), 2021, pp. 2421–2440. https://doi.org/10.1016/j.asr.2021.05.002.
- Ye B., Tian S., Ge J., Sun Y.: Assessment of WorldView-3 data for lithological mapping. Remote Sensing, vol. 9(11), 2017, 1132. https://doi.org/10.3390/rs9111132.
- El-Omairi M.A., Garouani A.E.: A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. Heliyon, vol. 9(9), 2023, e20168. https://doi.org/10.1016/j.heliyon.2023.e20168.
References
Farina P., Catani F., Colombo D., Fumagalli A., Kukavicic M., Marks F., Moretti S.: Remote sensing: A tool for landslide investigations at a basin scale. Geophysical Research Abstracts, vol. 7, 2005, pp. 10157–10168.
Al-Rawashdeh S., Saleh B., Hamzah M.: The use of remote sensing technology in geological investigation and mineral detection in El Azraq-Jordan. Cybergeo: European Journal of Geography – Cybergeo: Revue Européenne de Géographie, no. 358, 2006. https://doi.org/10.4000/cybergeo.2856.
Zhang X., Li P.: Lithological mapping from hyperspectral data by improved use of spectral angle mapper. International Journal of Applied Earth Observation and Geoinformation, vol. 31, 2014, pp. 95–109. https://doi.org/10.1016/j.jag.2014.03.007.
Masoumi F., Eslamkish T., Abkar A.A., Honarmand M., Harris J.R.: Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. Journal of African Earth Sciences, vol. 129, 2017, pp. 445–457. https://doi.org/10.1016/j.jafrearsci.2017.01.028.
Serbouti I., Raji M., Hakdaoui M., Pradhan B., Lee C.-W., Alamri A.M.: Pixel and object-based machine learning classification schemes for lithological mapping enhancement of Semi-Arid regions using Sentinel-2A imagery: A case study of the southern Moroccan Meseta. IEEE Access, vol. 9, 2021, pp. 119262–119278. https://doi.org/10.1109/ACCESS.2021.3107294.
Shahin M.A., Jaksa M.B., Maier H.R.: Artificial neural network applications in geotechnical engineering. Australian Geomechanics, vol. 36(1), 2001, pp. 49–62.
Shahin M.A., Jaksa M.B.: Neural network prediction of pullout capacity of marquee ground anchors. Computers and Geotechnics, vol. 32(1), 2005, pp. 153–163. https://doi.org/10.1016/j.compgeo.2005.02.003.
Das S.K., Basudhar P.K.: Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, vol. 100(3–4), 2008, pp. 142–145. https://doi.org/10.1016/j.enggeo.2008.03.001.
Azamathulla H.M., Guven A., Demir Y.K.: Linear genetic programming to scour below submerged pipeline. Ocean Engineering, vol. 38(8–9), 2011, pp. 995–1000. https://doi.org/10.1016/j.oceaneng.2011.03.005.
Garg A., Tai K., Gupta A.K.: A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica, vol. 49(5), 2014, pp. 1193–1209. https://doi.org/10.1007/s11012-013-9873-x.
Hajaj S., El Harti A., Jellouli A., Pour A.B., Mnissar Himyari S., Hamzaoui A., Hashim M.: Evaluating the Performance of Machine Learning and Deep Learning Techniques to HyMap Imagery for Lithological Mapping in a Semi-Arid Region: Case Study from Western Anti-Atlas, Morocco. Minerals, vol. 13(6), 2023, 766. https://doi.org/10.3390/min13060766.
El-Omairi M.A., El Garouani A.: A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. Heliyon, 2023, vol. 9(9), e20168. https://doi.org/10.1016/j.heliyon.2023.e20168.
Santos D., Cardoso-Fernandes J., Lima A., Müller A., Brönner M., Teodoro A.C.: Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF pegmatites in Tysfjord, Norway. Remote Sensing, vol. 14(15), 2022, 3532. https://doi.org/10.3390/rs14153532.
Cardoso-Fernandes J., Teodoro A.C., Lima A., Roda-Robles E.: Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites. Remote Sensing, vol. 12(14), 2020, 2319. https://doi.org/10.3390/rs12142319.
Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L.: Machine learning in geosciences and remote sensing. Geoscience Frontiers, vol. 7(1), 2016, pp. 3–10. https://doi.org/10.1016/j.gsf.2015.07.003.
Rowan L.C., Mars J.C.: Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, vol. 84(3), 2003, pp. 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X.
Massironi M., Bertoldi L., Calafa P., Visonà D., Bistacchi A., Giardino C., Schiavo A.: Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere, vol. 4(4), 2008, pp. 736–759. https://doi.org/10.1130/GES00161.1.
Harvey A.S., Fotopoulos G.: Geological mapping using machine learning algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B8, 2016, pp. 423–430. https://doi.org/10.5194/isprs-archives-XLI-B8-423-2016.
Serbouti I., Raji M., Hakdaoui M., El Kamel F., Pradhan B., Gite S., Alamri A., Maulud K.N.A., Dikshit A.: Improved lithological map of large complex Semi-Arid regions using spectral and textural datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers. Remote Sensing, vol. 14(21), 2022, 5498. https://doi.org/10.3390/rs14215498.
Drury S.A.: Image Interpretation in Geology. Allen & Unwin, London 1987.
Ninomiya Y., Fu B., Cudahy T.J.: Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, vol. 99(1–2), 2005, pp. 127–139. https://doi.org/10.1016/j.rse.2005.06.009.
Gad S., Kusky T.: ASTER spectral ratioing for lithological mapping in the ArabianNubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, vol. 11(3), 2007, pp. 326–335. https://doi.org/10.1016/j.gr.2006.02.010.
Leverington D.W., Moon W.M.: Landsat-TM-based discrimination of lithological units associated with the Purtuniq ophiolite, Quebec, Canada. Remote Sensing, vol. 4(5), 2012, pp. 1208–1231. https://doi.org/10.3390/rs4051208.
Black M., Riley T.R., Ferrier G., Fleming A.H., Fretwell P.T.: Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica. Remote Sensing of Environment, vol. 176, 2016, pp. 225–241. https://doi.org/10.1016/j.rse.2016.01.022.
Rowan L.C., Schmidt R.G., Mars J.C.: Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, vol. 104(1), 2006, pp. 74–87. https://doi.org/10.1016/j.rse.2006.05.014.
Kratt C., Calvin W.M., Coolbaugh M.F.: Mineral mapping in the Pyramid Lake basin: Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensing of Environment, vol. 114(10), 2010, pp. 2297–2304. https://doi.org/10.1016/j.rse.2010.05.006.
Zhang T., Yi G., Li H., Wang Z., Tang J., Zhong K., Li Y., Wang Q., Bie X.: Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry cu-au deposit, Tibetan Plateau, China. Remote Sensing, vol. 8(11), 2016, 890. https://doi.org/10.3390/rs8110890.
Vaughan R.G., Hook S.J., Calvin W.M., Taranik J.V.: Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sensing of Environment, vol. 99(1–2), 2005, pp. 140–158. https://doi.org/10.1016/j.rse.2005.04.030.
Vicente L.E., de Souza Filho C.R.: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, vol. 115(8), 2011, pp. 1824–1836. https://doi.org/10.1016/j.rse.2011.02.023.
Govil H., Gill N., Rajendran S., Santosh M., Kumar S.: Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geology Reviews, vol. 92, 2018, pp. 271–283. https://doi.org/10.1016/j.oregeorev.2017.11.023.
Gemusse U., Cardoso-Fernandes J., Lima A., Teodoro A.: Identification of pegmatites zones in Muiane and Naipa (Mozambique) from Sentinel-2 images, using band combinations, band ratios, PCA and supervised classification. Remote Sensing Applications: Society and Environment, vol. 32, 2023, 101022. https://doi.org/10.1016/j.rsase.2023.101022.
Tagwai M.G., Jimoh O.A., Shehu S.A., Zabidi H.: Application of GIS and remote sensing in mineral exploration: current and future perspectives. World Journal of Engineering, vol. 21(3), 2023, pp. 487–502. https://doi.org/10.1108/WJE-09-2022-0395.
Kruse F.A., Dietz J.B.: Integration of diverse remote sensing data sets for geologic mapping and resource exploration, [in:] Curran R.J., Smith J.A., Watson K. (eds.), Earth and Atmospheric Remote Sensing: 2–4 April 1991 Orlando, Florida, Proceedings of SPIE, vol. 1492, SPIE – The International Society for Optical Engineering, 1991, pp. 326–337. https://doi.org/10.1117/12.45859.
Al-Anazi A., Gates I.D.: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, vol. 114(3–4), 2010, pp. 267–277. https://doi.org/10.1016/j.enggeo.2010.05.005.
Sebtosheikh M.A., Salehi A.: Lithology prediction by support vector classifiers using inverted seismic attributes data and petrophysical logs as a new approach and investigation of training data set size effect on its performance in a heterogeneous carbonate reservoir. Journal of Petroleum Science and Engineering, vol. 134, 2015, pp. 143–149. https://doi.org/10.1016/j.petrol.2015.08.001.
Deng C., Pan H., Fang S., Konaté A.A., Qin R.: Support vector machine as an alternative method for lithology classification of crystalline rocks. Journal of Geophysics and Engineering, vol. 14(2), 2017, pp. 341–349. https://doi.org/10.1088/1742-2140/aa5b5b.
Bhattacharya S., Carr T.R., Pal M.: Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA. Journal of Natural Gas Science and Engineering, vol. 33, 2016, pp. 1119–1133. https://doi.org/10.1016/j.jngse.2016.04.055.
Xie Y., Zhu C., Zhou W., Li Z., Liu X., Tu M.: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, vol. 160, 2018, pp. 182–193. https://doi.org/10.1016/j.petrol.2017.10.028.
Sun J., Li Q., Chen M., Ren L., Huang G., Li C., Zhang Z.: Optimization of models for a rapid identification of lithology while drilling – a win-win strategy based on machine learning. Journal of Petroleum Science and Engineering, vol. 176, 2019, pp. 321–341. https://doi.org/10.1016/j.petrol.2019.01.006.
Merembayev T., Yunussov R., Yedilkhan A.: Machine learning algorithms for classification geology data from well logging, [in:] 2018 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 2018, IEEE, Piscataway 2018, pp. 206–212. https://doi.org/10.1109/ICECCO.2018.8634775.
Dev V.A., Eden M.R.: Evaluating the boosting approach to machine learning for formation lithology classification. Computer Aided Chemical Engineering, vol. 44, 2018, pp. 1465–1470. https://doi.org/10.1016/B978-0-444-64241-7.50239-1.
Dev V.A., Eden M.R.: Formation lithology classification using scalable gradient boosted decision trees. Computers & Chemical Engineering, vol. 128, 2019, pp. 392–404. https://doi.org/10.1016/j.compchemeng.2019.06.001.
Raeesi M., Moradzadeh A., Ardejani F.D., Rahimi M.: Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks. Journal of Petroleum Science and Engineering, vol. 82–83, 2012, pp. 151–165. https://doi.org/10.1016/j.petrol.2012.01.012.
Ouadfeul S.-A., Aliouane L.: Lithofacies classification using the multilayer perceptron and the self-organizing neural networks, [in:] Huang T., Zeng Z., Li C., Leung C.S. (eds.), Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12–15, 2012, Proceedings, Part V, Lecture Notes in Computer Science, vol. 7667, Springer, Berlin, Heidelberg 2012, pp. 737–744. https://doi.org/10.1007/978-3-642-34500-5_87.
Zych M., Stachura G., Hanus R., Szabó N.P.: Application of artificial neural networks in identification of geological formations on the basis of well logging data – a comparison of computational environments’ efficiency, [in:] Hanus R., Mazur D., Kreischer C. (eds.), Methods and Techniques of Signal Processing in Physical Measurements, MSM 2018, Lecture Notes in Electrical Engineering, vol. 548, Springer, Cham 2019, pp. 416–422. https://doi.org/10.1007/978-3-030-11187-8_34.
Salehi S.M., Honarvar B.: Automatic identification of formation lithology from well log data: a machine learning approach. Journal of Petroleum Science Research, vol. 3(2), pp. 73–82, 2014.
Li Z., Kang Y., Feng D., Wang X.-M., Lv W., Chang J., Zheng W.X.: Semisupervised learning for lithology identification using Laplacian support vector machine. Journal of Petroleum Science and Engineering, vol. 195, 2020, 107510. https://doi.org/10.1016/j.petrol.2020.107510.
Ikenne M., Mortaji A., Gasquet D., Stussi J.M.: Les filons basiques des boutonnières du Bas Drâa et de la Tagragra d’Akka: Témoins des distensions néoprotérozoïques de l’Anti-Atlas occidental (Maroc). Journal of African Earth Sciences, vol. 25(2), 1997, pp. 209–223. https://doi.org/10.1016/S0899-5362(97)00099-7.
Benbrahim M., Aissa M., Zouhair M.: Synthèse géologique et métallogénique du gisement aurifère d’Iourirne (Boutonnière de Tagragra d’Akka, Anti-Atlas occidental, Maroc). International Journal of Innovation and Applied Studies, vol. 24(1), 2018, pp. 428–438.
Maacha L.: Études métallogéniques et géophysiques des minéralisations cobaltifères et cuprifères de Bou-Azzer El Graara, Anti-Atlas Maroc. Université Cadi Ayyad, Marrakech 2013 [Ph.D. thesis, unpublished].
Adiri Z., Lhissou R., Maacha L., Jilali A., Talbi E.H., Jellouli A., Chakouri M.: Comparison of ASTER GDEM3, SRTM3, NASADEM, TanDEM-X90, AW3D30, and ALOS PALSAR data with TanDEM-X12: A case study of Tagragra of Akka inlier, Moroccan Anti-Atlas. Arabian Journal of Geosciences, vol. 15(21), 2022, 1654. https://doi.org/10.1007/s12517-022-10885-x.
Zouhair M., Marignac C.: Les paléocirculations fluides dans la Tagragra d’Akka (Anti-Atlas, Maroc): Etude combinée des inclusions fluides et de la déformation des quartz aurifères: conséquences pour la métallogénie de l’or. Institut National Polytechnique de Lorraine, Nancy 1992 [Ph.D. thesis].
Benbrahim M., Aissa M.: Le gisement aurifère d’Iourirn (boutonnière de Tagragra d’Akka, Anti-Atlas occidental, Maroc): Un exemple de minéralisation mésothermale dans les formations paléoprotérozoïques. Bulletin de l’Institut Scientifique, no. 27, 2005, pp. 41–46.
Boya T.K.L.D.: Pétrologie, métallogénie et géochimie des altérations hydrothermales des gisements aurifères d’Angarf, Irbiben et Ifarar (boutonnière Tagragra d’Akka, Anti-Atlas, Maroc). Université Ibn Tofail, Kénitra 2014 [Ph.D. thesis].
Potherat P., Ait Kassi M., Nicot P., Macaudiere J., Marignac C.: Structural evolution of gold-bearing quartz veins in the Precambrian exposures of the Tagragra d’Akka (western Anti-Atlas, Morocco), [in:] Pagel M., Leroy J. (eds.), Source, Transport and Deposition of Metals: Proceedings of the 25 Years SGA Anniversary Meeting, Nancy, 30 August–3 September, 1991, Balkema, Rotterdam 1991, pp. 477–480.
Choubert G.: Histoire géologique du Précambrien de l’Anti-Atlas. Tome 1. Éditions du Service Géologique du Maroc, Rabat 1963.
Mortaji A.: La boutonnière précambrienne de Tagragra d’Akka (Anti-Atlas occidental, Maroc): Pétrologie et géochimie des granitoïdes, filons basiques et métamorphites associées. l’Université Henri Poincaré, Nancy 1989 [Ph.D. thesis].
Michard A.: Eléments de Géologie Marocaine. Éditions du Service Géologique du Maroc, Rabat 1976.
Hassenforder B., Roger J., Baudin T., Chalot-Prat F., Gasquet D., Berrahma A., Chèvremont P., Marquer D., Razin P., Benlakhdim: Carte géologique de Sidi Bou’addi (Maroc) au 1/50 000, avec notice explicative. Notes et Mémoires du Service Géologique, no. 414, Editions du Service Géologique du Maroc, Rabat 2001.
Roger J., Gasquet D., Baudin T., Chalot-Prat F., Hassenforder B., Marquer I.D., Chèvremont P., Berrahma A., Destombes J., Razin P., Benlakhdim A.: Carte géologique de Tamazrar (Maroc) à 1/50 000, avec notice explicative. Notes et Mémoires du Service Géologique, no. 415, Editions du Service Géologique du Maroc, Rabat 2001.
Gasquet D., Chevremont P., Baudin T., Chalot-Prat F., Guerrot C., Cocherie A., Roger J., Hassenforder B., Cheilletz A.: Polycyclic magmatism in the Tagragra d’Akka and Kerdous-Tafeltast inliers (Western Anti-Atlas, Morocco). Journal of African Earth Sciences, vol. 39(3–5), 2004, pp. 267–275. https://doi.org/10.1016/j.jafrearsci.2004.07.062.
Boya T.K.L.-D., Gnanzou A., Hervà K.J.L., Adingra P.K.M., Goulihi D.D., M’Rabet S.: Petrography and geochemistry for proposal of geodynamic model for the Irbiben granite in Tagragra d’Akka inlier, (western Anti-Atlas, Morocco). Journal of Geoscience, Engineering, Environment, and Technology, vol. 7(3), 2022, pp. 102–109. https://doi.org/10.25299/jgeet.2022.7.3.10275.
Hassenforder B.: La tectonique panafricaine et varisque de l’Anti-Atlas dans le massif du Kerdous (Maroc). Université Louis Pasteur, Strasbourg 1987 [Ph.D. thesis].
Marignac C.: Contribution à l’étude du potentiel aurifère des Tagragra d’Akka et de Tata. Rapport inédit, BRPM, Rabat 1990.
ESA Sentinel-2 Team: GMES Sentinel-2 mission requirements document. European Space Agency, 2007. https://citeseerx.ist.psu.edu/document?repid=rep1&-type=pdf&doi=0f3f3987fa4ec266f76efbe180b1ebb9129a4dc8 [access: 5.10.2024].
European Space Agency: ALOS PRISM L1B, Version 1.0. https://earth.esa.int/eogateway/catalog/alos-prism-l1b [access: 3.02.2024].
Ozendi M., Topan H., Cam A., Bayık Ç.: Pan sharpening quality investigation of Turkish in-operation remote sensing satellites: Applications with RASAT and GÖKTÜRK-2 images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W1, 2016, pp. 131–135. https://doi.org/10.5194/isprs-archives-XLII-2-W1-131-2016.
Kaplan G.: Sentinel-2 pan sharpening – comparative analysis. Proceedings, vol. 2(7), 2018, 345. https://doi.org/10.3390/ecrs-2-05158.
Pohl C., van Genderen J.L.: Multisensor fusion: optimization and operationalization for mapping applications, [in:] Kadar I., Libby V. (eds.), Signal Processing, Sensor Fusion, and Target Recognition III: 4–8 April 1994, Orlando, Florida, United States, Proceedings of SPIE, vol. 2232, SPIE – The International Society for Optical Engineering, 1994, pp. 12–25. https://doi.org/10.1117/12.177750.
Sheffield C.: Selecting band combinations from multi spectral data. Photogrammetric Engineering and Remote Sensing, vol. 51(6), 1985, pp. 681–687.
Pohl C., van Genderen J.L.: Review article. Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, vol. 19(5), 1998, pp. 823–854. https://doi.org/10.1080/014311698215748.
Bakioğlu O.B., Topan H., Özendi M., Cam A.: Pansharpening of RASAT and GÖKTÜRK-2 images via high pass filter. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-4/W6, 2017, pp. 27–29. https://doi.org/10.5194/isprs-archives-XLII-4-W6-27-2017.
Vrabel J., Doraiswamy P., Stern A.: Application of hyperspectral imagery resolution improvement for site-specific farming, [in:] XXII FIG International Congress: ACSM-ASPRS Conference and Technology Exhibition 2002 congress/conference proceedings: April 19–26, 2002, Washington, D.C., American Society for Photogrammetry and Remote Sensing, Washington 2002.
Vrabel J.C., Doraiswamy P., McMurtrey James E. III, Stern A.: Demonstration of the accuracy of improved-resolution hyperspectral imagery, [in:] Shen S.S., Lewis P.E. (eds.), Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII: 23–27 April 2012, Baltimore, Maryland, United States, Proceedings of SPIE, vol. 4725, SPIE – The International Society for Optical Engineering, 2002, pp. 556–567. https://doi.org/10.1117/12.478790.
Despini F., Teggi S., Baraldi A.: Methods and metrics for the assessment of pan-sharpening algorithms, [in:] Bruzzone L. (ed.), Image and Signal Processing for Remote Sensing XX: 22–24 September 2014, Amsterdam, Netherlands, Proceedings of SPIE, vol. 9244, SPIE – The International Society for Optical Engineering, 2014. https://doi.org/10.1117/12.2067316.
Gupta R.P.: Remote Sensing Geology. 3rd ed., Springer, Berlin, Heidelberg 2018. https://doi.org/10.1007/978-3-662-55876-8.
Jolliffe I.T., Cadima J.: Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374(2065), 2016, 20150202. https://doi.org/10.1098/rsta.2015.0202.
Fung T., LeDrew E.: Application of principal components analysis to change detection. Photogrammetric Engineering and Remote Sensing, vol. 53(12), 1987, pp. 1649–1658.
Ready P., Wintz P.: Information extraction, SNR improvement, and data compression in multispectral imagery. IEEE Transactions on Communications, vol. 21(10), 1973, pp. 1123-1131. https://doi.org/10.1109/TCOM.1973.1091550.
Palaniswami C., Upadhyay A.K., Maheswarappa H.P.: Spectral mixture analysis for subpixel classification of coconut. Current Science, vol. 91(12), 2006, pp. 1706–1711. http://www.jstor.org/stable/24094026.
Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, vol. 8(7), 2015, pp. 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015.
Dubey S.K., Vijay S., Pratibha: A review of image segmentation using clustering methods. International Journal of Applied Engineering Research, vol. 13(5), 2018, pp. 2484–2489.
Chen Z., Qi Z., Meng F., Cui L., Shi Y.: Image segmentation via improving clustering algorithms with density and distance. Procedia Computer Science, vol. 55, 2015, pp. 1015–1022. https://doi.org/10.1016/j.procs.2015.07.096.
Pal N.R., Pal S.K.: A review on image segmentation techniques. Pattern Recognition, vol. 26(9), 1993, pp. 1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J.
Fukunaga K., Hostetler L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, vol. 21(1), 1975, pp. 32–40. https://doi.org/10.1109/TIT.1975.1055330.
Cheng Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17(8), 1995, pp. 790–799. https://doi.org/10.1109/34.400568.
Fei W., Zhu S.: Mean shift clustering-based moving object segmentation in the H.264 compressed domain. IET Image Processing, vol. 4(1), 2010, pp. 11–18. https://doi.org/10.1049/iet-ipr.2009.0038.
Liu C., Zhou A., Zhang Q., Zhang G.: Adaptive image segmentation by using mean-shift and evolutionary optimisation. IET Image Processing, vol. 8(6), 2014, pp. 327–333. https://doi.org/10.1049/iet-ipr.2013.0195.
Soysal Ö.M., Schneider H., Shrestha A., Guempel C.D., Li P., Donepudi H., Kondoju N.K., Sekeroglu K.: Zonal statistics to identify hot-regions of traffic accidents, [in:] Arabnia H.R., Deligiannidis L., Marsh A., Solo A.M..G. (eds.), Proceedings of the 2012 International Conference on Modeling, Simulation & Visualization Methods MSV 2012: WORLDCOMP’12, July 16–19, 2012, Las Vegas, Nevada, USA, pp. 287–293. http://worldcomp-proceedings.com/proc/p2012/MSV6182.pdf [access: 23.02.2024].
Jog S., Dixit M.: Supervised classification of satellite images, [in:] 2016 Conference on Advances in Signal Processing (CASP), Pune, India, IEEE, Piscataway 2016, pp. 93–98. https://doi.org/10.1109/CASP.2016.7746144.
Perumal K., Bhaskaran R.: Supervised classification performance of multispectral images. Journal of Computing, vol. 2(2), 2010, pp. 124–129. https://doi.org/10.48550/arXiv.1002.4046.
Bachri I., Hakdaoui M., Raji M., Teodoro A.C., Benbouziane A.: Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, vol. 8(6), 2019, 248. https://doi.org/10.3390/ijgi8060248.
European Space Agency: Sentinel Application Platform (SNAP). Paris, 2023. https://earth.esa.int/eogateway/tools/snap.
Xavier Pons J.C., Sanjurjo-Vílchez J.: Some notes on the divergence and transformed divergence formulae in the remote sensing literature. Remote Sensing Letters, vol. 15(11), 2024, pp. 1187–1194. https://doi.org/10.1080/2150704X.2024.2420286.
Gholamy A., Kreinovich V., Kosheleva O.: Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, vol. 11(2), 2018, pp. 105–111. https://doi.org/10.6148/IJITAS.201806_11(2).0003.
Vapnik V.: The Nature of Statistical Learning Theory. Springer, New York 1995.
Grizonnet M., Michel J., Poughon V., Inglada J., Savinaud M., Cresson R.: Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data, Software and Standards, vol. 2, 2017, 15. https://doi.org/10.1186/s40965-017-0031-6.
Luque A., Carrasco A., Martín A., de las Heras A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, vol. 91, 2019, pp. 216–231. https://doi.org/10.1016/j.patcog.2019.02.023.
Grandini M., Bagli E., Visani G.: Metrics for multi-class classification: An overview. arXiv preprint arXiv:2008.05756, 2020. https://doi.org/10.48550/arXiv.2008.05756.
Landis J.R., Koch G.G.: The measurement of observer agreement for categorical data. Biometrics, vol. 33(1), 1977, pp. 159–174. https://doi.org/10.2307/2529310.
Zengeya F.M., Mutanga O., Murwira A.: Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. International Journal of Applied Earth Observation and Geoinformation, vol. 21, 2013, pp. 513–524. https://doi.org/10.1016/j.jag.2012.07.008.
Chen Y., Wang Y., Zhang F., Dong Y., Song Z., Liu G.: Remote sensing for lithology mapping in vegetation-covered regions: Methods, challenges, and opportunities. Minerals, vol. 13(9), 2023, 1153. https://doi.org/10.3390/min13091153.
Dong Y., Yang Z., Liu Q., Zuo R., Wang Z.: Fusion of GaoFen-5 and Sentinel-2B data for lithological mapping using vision transformer dynamic graph convolutional network. International Journal of Applied Earth Observation and Geoinformation, vol. 129, 2024, 103780. https://doi.org/10.1016/j.jag.2024.103780.
Karimzadeh S., Tangestani M.H.: Evaluating the VNIR-SWIR datasets of WorldView-3 for lithological mapping of a metamorphic-igneous terrain using support vector machine algorithm; a case study of Central Iran. Advances in Space Research, vol. 68(6), 2021, pp. 2421–2440. https://doi.org/10.1016/j.asr.2021.05.002.
Ye B., Tian S., Ge J., Sun Y.: Assessment of WorldView-3 data for lithological mapping. Remote Sensing, vol. 9(11), 2017, 1132. https://doi.org/10.3390/rs9111132.
El-Omairi M.A., Garouani A.E.: A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. Heliyon, vol. 9(9), 2023, e20168. https://doi.org/10.1016/j.heliyon.2023.e20168.