Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Satellite-Based Urban Heat Island Study: A Prisma-Based Systematic Literature Review
Corresponding Author(s) : Soni Darmawan
Geomatics and Environmental Engineering,
Vol. 19 No. 6 (2025): Geomatics and Environmental Engineering
Abstract
Over the years, urban heat island (UHI) has emerged as a significant contributor to global warming, thereby necessitating considerable attention. Currently, satellite technology is a basic tool for the future – particularly, for its effective and efficient urban analysis. Thus, this study aims to assess the progress of existing satellite-based UHI studies by reviewing scientific publications that were released between 1972 and early 2024. Moreover, we observed that 1991 was a pivotal year, marking the integration of satellite technologies into the development of UHI monitoring and identification systems based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this review methodology examines the UHI phenomenon by focusing on its characteristics based on sensors, algorithms, and accuracy. The results of the systematic review revealed that Landsat and MODIS were the most-deployed sensors for UHI identification and monitoring, while the land surface temperature (LST) indicator and normalized difference vegetation index (NDVI) were the most-deployed algorithms. Regarding accuracy, the integration of satellite sensors and algorithms into UHI studies provides a promising range of accuracies. The review found that the future of satellite-based UHI monitoring is promising, with technological advancements driving the development of effective techniques such as data fusion, gap filling, machine learning (ML), and deep learning. Additionally, Google Earth Engine (GEE) is a cloud-based platform for performing large-scale geospatial analyses, which facilitates the assessments of local, regional, and global-scale UHIs. Finally, the other review findings for future directions indicated that future satellite-based UHI studies will prioritize six crucial points: enhancing data resolution, integrating satellite data with ground-based sensors, artificial intelligence, and ML, climate change modeling, and a global study of UHIs and their impacts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Oke T.R.: The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, vol. 108(455), 1982, pp. 1–24. https://doi.org/10.1002/qj.49710845502.
- Voogt J.A., Oke T.R.: Thermal remote sensing of urban climates. Remote Sensing of Environment, vol. 86(3), 2003, pp. 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8.
- Wang S., Ma Q., Ding H., Liang H.: Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resources, Conservation and Recycling, vol. 128, 2018, pp. 526–534. https://doi.org/10.1016/j.resconrec.2016.05.011.
- Xiong Y., Huang S., Chen F., Ye H., Wang C., Zhu C.: The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing, vol. 4(7), 2012, pp. 2033–2056. https://doi.org/10.3390/rs4072033.
- Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L.: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, vol. 114(3), 2010, pp. 504–513. https://doi.org/10.1016/j.rse.2009.10.008.
- MetLink – Royal Meteorological Society: Urban Heat Islands. 2013. https://www.metlink.org/fieldwork-resource/urban-heat-island-introduction/ [access: 27.06.2024].
- Pal S., Ziaul S.: Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian Journal of Remote Sensing and Space Science, vol. 20(1), 2017, pp. 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003.
- Tosca M.G., Campbell J., Garay M., Lolli S., Seidel F.C., Marquis J., Kalashnikova O.: Attributing accelerated summertime warming in the southeast United States to recent reductions in aerosol burden: Indications from vertically-resolved observations. Remote Sensing, vol. 9(7), 2017, 674. https://doi.org/10.3390/rs9070674.
- IPCC: Global Warming of 1.5°C: Headline Statements from the Summary for Policymakers, [in:] Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, 2018, pp. 1–2.
- Zhou D., Xiao J., Bonafoni S., Berger C., Deilami K., Zhou Y., Frolking S., Yao R., Qiao Z., Sobrino J.A.: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, vol. 11(1), 2019, 48. https://doi.org/10.3390/rs11010048.
- Na N., Xu D., Fang W., Pu Y., Liu Y., Wang H.: Automatic detection and dynamic analysis of urban heat islands based on Landsat images. Remote Sensing, vol. 15(16), 2023, 4006. https://doi.org/10.3390/rs15164006.
- Carmin J., Nadkarni N., Rhie C.: Progress and Challenges in Urban Climate Adaptation Planning: Results of a Global Survey. MIT, Cambridge 2012. https://www.cakex.org/sites/default/files/documents/Urban_Adaptation_Report_23May2012.pdf [access: 21.05.2023].
- Duncan J.M.A., Boruff B., Saunders A., Sun Q., Hurley J., Amati M.: Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, vol. 656, 2019, pp. 118–128. https://doi.org/10.1016/j.scitotenv.2018.11.223.
- Soux A., Voogt J.A., Oke T.R.: A model to calculate what a remote sensor “sees” of an urban surface. Boundary-Layer Meteorology, vol. 112(2), 2004, pp. 109–132. https://doi.org/10.1023/B:BOUN.0000027978.21230.b7.
- Yuan Y., Santamouris M., Xu D., Geng X., Li C., Cheng W., Su L., Xiong P., Fan Z., Wang X., Liao C.: Surface urban heat island effects intensify more rapidly in lower income countries. npj Urban Sustainability, vol. 5, 2025, 11. https://doi.org/10.1038/s42949-025-00198-9.
- Tepanosyan G., Muradyan V., Hovsepyan A., Pinigin G., Medvedev A., Asmaryan S.: Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Building and Environment, vol. 187, 2021, 107390. https://doi.org/10.1016/j.buildenv.2020.107390.
- Weng Q., Larson R.C.: Satellite remote sensing of urban heat islands: Current practice and prospects, [in:] Jensen R.R., Gatrell J.D., McLean D.D. (eds.), Geo-Spatial Technologies in Urban Environments: Policy, Practice, and Pixels, Springer, Berlin, Heidelberg 2005, pp. 91–111. https://doi.org/10.1007/3-540-26676-3_10.
- Frey C.M., Kuenzer C.: Analysing a 13 years MODIS land surface temperature time series in the Mekong Basin, [in:] Kuenzer C., Dech S., Wagner W. (eds.), Remote Sensing Time Series: Revealing Land Surface Dynamics, Remote Sensing and Digital Image Processing, vol. 22, Springer, Cham 2015, pp. 119–140. https://doi.org/10.1007/978-3-319-15967-6_6.
- Nill L., Ullmann T., Kneisel C., Sobiech-Wolf J., Baumhauer R.: Assessing spatiotemporal variations of Landsat land surface temperature and multispectral indices in the Arctic Mackenzie Delta region between 1985 and 2018. Remote Sensing, vol. 11(19), 2019, 2329. https://doi.org/10.3390/rs11192329.
- Wan Z., Dozier J.: Viewing-angle dependent split-window method for retrieving land-surface temperatures from space, [in:] Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 1995, pp. 1665–1667. https://doi.org/10.1109/IGARSS.1995.521176.
- Tian L., Li Y., Lu J., Wang J.: Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability, vol. 13(2), 2021, 762. https://doi.org/10.3390/su13020762.
- Yang C., Wu G., Chen J., Li Q., Ding K., Wang G., Zhang C.: Simulating and forecasting spatio-temporal characteristic of land-use/cover change with numerical model and remote sensing: A case study in Fuxian Lake Basin, China. European Journal of Remote Sensing, vol. 52(1), 2019, pp. 374–384. https://doi.org/10.1080/22797254.2019.1611387.
- Ramakreshnan L., Aghamohammadi N., Fong C.S., Ghaffarianhoseini A., Ghaffarianhoseini A., Wong L.P., Hassan N., Sulaiman N.M.: A critical review of urban heat island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustainable Cities and Society, vol. 39, 2018, pp. 99–113. https://doi.org/10.1016/j.scs.2018.02.005.
- Pahlevan-Sharif S., Mura P., Wijesinghe S.N.R.: A systematic review of systematic reviews in tourism. Journal of Hospitality and Tourism Management, vol. 39, 2019, pp. 158–165. https://doi.org/10.1016/j.jhtm.2019.04.001.
- Hernawati R., Wikantika K., Darmawan S.: Modeling of oil palm phenology based on remote sensing data: Opportunities and challenges. Journal of Applied Remote Sensing, vol. 16(2), 2022, 021501. https://doi.org/10.1117/1.jrs.16.021501.
- Bustos Navarrete C., Morales Malverde M.G., Salcedo Lagos P., Díaz Mujica A.: Buhos: A web-based systematic literature review management software. SoftwareX, vol. 7, 2018, pp. 360–372. https://doi.org/10.1016/j.softx.2018.10.004.
- Popay J., Roberts H., Sowden A., Petticrew M., Britten N., Arai L., Roen K., Rodgers M.: Developing guidance on the conduct of narrative synthesis in systematic reviews. Journal of Epidemiology and Community Health, vol. 59 (Suppl. 1), 2005, A7.
- Ngie A., Abutaleb K., Ahmed F., Darwish A., Ahmed M.: Assessment of urban heat island using satellite remotely sensed imagery: A review. South African Geographical Journal, vol. 96(2), 2014, pp. 198–214. https://doi.org/10.1080/03736245.2014.924864.
- Saleem M.S., Ahmad S.R., Shafiq-Ur-Rehman, Javed M.A.: Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: A case study of Lahore, Faisalabad and Multan district. Environmental Science and Pollution Research, vol. 27(32), 2020, pp. 39865–39878. https://doi.org/10.1007/s11356-020-10050-5.
- Freitas S.C., Trigo I.F., Macedo J., Barroso C., Silva R., Perdigão R.: Land surface temperature from multiple geostationary satellites. International Journal of Remote Sensing, vol. 34(9–10), 2013, pp. 3051–3068. https://doi.org/10.1080/01431161.2012.716925.
- Almeida J., dos Santos J.A., Alberton B., Torres R.D.S., Morellato L.P.C.: Remote phenology: Applying machine learning to detect phenological patterns in a cerrado savanna, [in:] 2012 IEEE 8th International Conference on E-Science (e-Science), IEEE, 2012, pp. 1–8. https://doi.org/10.1109/eScience.2012.6404438.
- Wang M., Zhang Z.Z., Hu T., Wang G., He G., Zhang Z.: An efficient framework for producing Landsat-based land surface temperature data using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 4689–4701. https://doi.org/10.1109/JSTARS.2020.3014586.
- Dewa D.D., Buchori I.: Impacts of rapid urbanization on spatial dynamics of land use-based carbon emission and surface temperature changes in the Semarang Metropolitan Region, Indonesia. Environmental Monitoring and Assessment, vol. 195(2), 2023, 259. https://doi.org/10.1007/s10661-022-10839-6.
- Tariq A., Shu H.: CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sensing, vol. 12(20), 2020, 3402. https://doi.org/10.3390/rs12203402.
- Deilami K., Kamruzzaman M., Liu Y.: Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, vol. 67, 2018, pp. 30–42. https://doi.org/10.1016/j.jag.2017.12.009.
- Aslan N., Koc-San D.: Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XLI-B8, 2016, pp. 821–828. https://doi.org/10.5194/isprs-archives-XLI-B8-821-2016.
- Al Kafy A., Al Faisal A., Shuvo R.M., Naim M.N.H., Sikdar M.S., Chowdhury R.R., Islam M.A., Sarker M.H.S., Khan M.H.H., Kona M.A.: Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sensing Applications: Society and Environment, vol. 21, 2021, 100463. https://doi.org/10.1016/j.rsase.2020.100463.
- Shukla S.S., Jaiswal V.: Applicability of artificial intelligence in different fields of life. International Journal of Scientific Engineering and Research (IJSER), vol. 1(1), 2013, pp. 28–35. https://www.doi.org/10.70729/1130915.
- Moazzam M.F.U., Doh Y.H., Lee B.G.: Impact of urbanization on land surface temperature and surface urban heat island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Building and Environment, vol. 222, 2022, 109368. https://doi.org/10.1016/j.buildenv.2022.109368.
- Li Z.L., Tang B.H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A.: Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, vol. 131, 2013, pp. 14–37. https://doi.org/10.1016/j.rse.2012.12.008.
- Wan Z., Wang P., Li X.: Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, vol. 25(1), 2004, pp. 61–72. https://doi.org/10.1080/0143116031000115328.
- Almeida C.R., de, Furst L., Gonçalves A., Teodoro A.C.: Remote sensing imagebased analysis of the urban heat island effect in Bragança, Portugal. Environments, vol. 9(8), 2022, 98. https://doi.org/10.3390/environments9080098.
- Neumann W., Martinuzzi S., Estes A.B., Pidgeon A.M., Dettki H., Ericsson G., Radeloff V.C.: Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Movement Ecology, vol. 3(1), 2015, 8. https://doi.org/10.1186/s40462-015-0036-7.
- Khalil U., Aslam B., Azam U., Khalid H.M.D. Time series analysis of land surface temperature and drivers of urban heat island effect based on remotely sensed data to develop a prediction model. Applied Artificial Intelligence, vol. 35(15), 2021, pp. 1803–1828. https://doi.org/10.1080/08839514.2021.1993633.
- Zoran M.A., Savastru R., Savastru D., Tautan M.N., Penache A.C.: Spatiotemporal changes of urban land surface albedo impact on thermal environment in Bucharest Metropolitan City. WSEAS Transactions on Environment and Development, vol. 19, 2023, pp. 1037–1044. https://doi.org/10.37394/232015.2023.19.98
- Wu W., Ren H., Yu M., Wang Z.: Distinct influences of urban villages on urban heat islands: A case study in the Pearl River Delta, China. International Journal of Environmental Research and Public Health, vol. 15(8), 2018, 1666. https://doi.org/10.3390/ijerph15081666.
- Lu Y., Yang J., Ma S.: Dynamic changes of local climate zones in the Guangdong–Hong Kong–Macao Greater Bay Area and their spatio-temporal impacts on the surface urban heat island effect between 2005 and 2015. Sustainability, vol. 13(11), 2021, 6374. https://doi.org/10.3390/su13116374.
- Li Z.-L., Si M., Leng P.: Review of remotely sensed surface urban heat islands from the fresh perspective of comparisons among different regions. Progress in Electromagnetics Research C, vol. 102, 2020, pp. 31–46. https://doi.org/10.2528/PIERC20020403.
- Parastatidis D., Mitraka Z., Chrysoulakis N., Abrams M.: Online global land surface temperature estimation from Landsat. Remote Sensing, vol. 9(12), 2017, 1208. https://doi.org/10.3390/rs9121208.
- Abrams M., Tsu H., Hulley G., Iwao K., Pieri D., Cudahy T., Kargel J.: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, vol. 38, 2015, pp. 292–301. https://doi.org/10.1016/j.jag.2015.01.013.
- Addas A.: Machine learning techniques to map the impact of urban heat island: Investigating the city of Jeddah. Land, vol. 12(6), 2023, 1159. https://doi.org/10.3390/land12061159.
- Vermote E., Roger J.C., Franch B., Skakun S.: LASRC (Land SurReflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s, [in:] 2018 IEEE International Geoscience & Remote Sensing Symposium: Proceedings: July 22–27, 2018, Valencia, Spain, IEEE, Piscataway 2018, pp. 8173–8176. https://doi.org/10.1109/IGARSS.2018.8517622.
- USGS (United States Geological Survey): Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product [access: 2.07.2024].
- Fashae O., Adagbasa E., Olusola A., Obateru R.: Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria. Environmental Monitoring and Assessment, vol. 192, 2020, 109. https://doi.org/10.1007/s10661-019-8054-3.
- Kumari B., Tayyab M., Shahfahad, Salman, Mallick J., Khan M.F., Rahman A.: Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ LC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing in Earth Systems Sciences, vol. 1(3–4), 2018, pp. 63–78. https://doi.org/10.1007/s41976-018-0004-2.
- Jiménez-Muñoz J.C., Sobrino J.A., Skoković D., Mattar C., Cristóbal J.: Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, vol. 11(10), 2014, pp. 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032.
- Karnieli A., Ohana-Levi N., Silver M., Paz-Kagan T., Panov N., Varghese D., Chrysoulakis N., Provenzale A.: Spatial and seasonal patterns in vegetation growth-limiting factors over Europe. Remote Sensing, vol. 11(20), 2019, 2406. https://doi.org/10.3390/rs11202406.
- Stathopoulou M., Cartalis C.: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, vol. 81(3), 2007, pp. 358–368. https://doi.org/10.1016/j.solener.2006.06.014.
- Qin Z., Karnieli A., Berliner P.: A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing, vol. 22(18), 2001, pp. 3719–3746. https://doi.org/10.1080/01431160010006971.
- McMillin L.M.: Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, vol. 80(36), 1975, pp. 5113–5117. https://doi.org/10.1029/JC080i036p05113.
- Jiménez-Muñoz J.C., Sobrino J.A.: A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, vol. 108(D22), 2003, 4688. https://doi.org/10.1029/2003JD003480.
- Wang L., Lu Y., Yao Y.: Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images. Sensors, vol. 19(22), 2019, 5049. https://doi.org/10.3390/s19225049.
- Wang F., Qin Z., Song C., Tu L., Karnieli A., Zhao S.: An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 Thermal Infrared Sensor data. Remote Sensing, vol. 7(4), 2015, pp. 4268–4289. https://doi.org/10.3390/rs70404268.
- Sismanidis P., Bechtel B., Perry M., Ghent D.: The seasonality of surface urban heat islands across climates. Remote Sensing, vol. 14(10), 2022, 2318. https://doi.org/10.3390/rs14102318.
- Vallet A., Dupuy S., Verlynde M., Gaetano R.: Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning. Scientific Data, vol. 11, 2024, 915. https://doi.org/10.1038/s41597-024-03750-x.
- Kafy A.-A., Rahman M.S., Faisal A.-A., Hasan M.M., Islam M.: Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, vol. 18, 2020, 100314. https://doi.org/10.1016/j.rsase.2020.100314.
- Kafy A.-A., Faisal A.-A., Rahman M.S., Islam M., Al Rakib A., Islam M.A., Khan M.H.H., Sikdar M.S., Sarker M.H.S., Mawa J., Sattar G.S.: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, vol. 64, 2021, 102542. https://doi.org/10.1016/j.scs.2020.102542.
- Wang M., He G., Zhang Z., Wang G., Wang Z., Yin R., Cui S., Wu Z., Cao X.: A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. International Journal of Applied Earth Observation and Geoinformation, vol. 76, 2019, pp. 204–217. https://doi.org/10.1016/j.jag.2018.11.015.
- Zareie S., Khosravi H., Nasiri A., Dastorani M.: Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth, vol. 7(6), 2016, pp. 1551–1564. https://doi.org/10.5194/se-7-1551-2016.
- Feyisa G.L., Meilby H., Jenerette G.D., Pauliet S.: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sensing of Environment, vol. 175, 2016, pp. 14–31. https://doi.org/10.1016/j.rse.2015.12.026.
- Zoran M.A., Savastru R.S., Savastru D.M., Dida A.: Impacts of urban growth and heat waves events on the urban heat island in Bucharest city, [in:] Remote Sensing Technologies and Applications in Urban Environments, Proceedings of SPIE, vol. 10008, SPIE, 2016, 1000813. https://doi.org/10.1117/12.2241360.
- Nanjam R., Farnood Ahmadi F.: A new spatiotemporal model for analyzing the variations of urban heat islands using remotely sensed multi spectral images: The case of Mashhad City, Iran. Journal of the Indian Society of Remote Sensing, vol. 49(10), 2021, pp. 2489–2502. https://doi.org/10.1007/s12524-021-01404-8.
- Kayet N., Pathak K., Chakrabarty A., Sahoo S.: Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research, vol. 24(5), 2016, pp. 515–529. https://doi.org/10.1007/s41324-016-0049-3.
- Le M.T., Bakaeva N.: A technique for generating preliminary satellite data to evaluate SUHI using cloud computing: A case study in Moscow, Russia. Remote Sensing, vol. 15(13), 2023, 3294. https://doi.org/10.3390/rs15133294.
- Kafy A.-A., Faisal A.-A., Rahman M.S., Islam M., Rakib A.-A., Islam M.A., Khan M.H.H., Sikdar M.S., Sarker M.H.S., Mawa J., Sattar G.S.: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, vol. 64, 2021, 102542. https://doi.org/10.1016/j.scs.2020.102542.
- Verma P., Raghubanshi A.S., Srivastava P.K., Raghubanshi A.S.R.: Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment, vol. 6(2), 2020, pp. 1045–1059. https://doi.org/10.1007/s40808-020-00740-x.
- Shukla A., Jain K.: Critical analysis of rural-urban transitions and transformations in Lucknow city, India. Remote Sensing Applications: Society and Environment, vol. 13, 2019, pp. 445–456. https://doi.org/10.1016/j.rsase.2019.01.001.
- Mushore T.D., Dube T., Manjowe M., Gumindoga W., Chemura A., Rousta I., Odindi J., Mutanga O.: Remotely sensed retrieval of local climate zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Climate, vol. 27, 2019, pp. 259–271. https://doi.org/10.1016/j.uclim.2018.12.006.
- Chaka D.S., Oda T.K.: Understanding land surface temperature on rift areas to examine the spatial variation of urban heat island: The case of Hawassa, southern Ethiopia. GeoJournal, vol. 86(2), 2021, pp. 993–1014. https://doi.org/10.1007/s10708-019-10110-5.
- Tarawally M., Xu W., Hou W., Mushore T.D.: Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and inland city: A case of Freetown and Bo Town in Sierra Leone. Remote Sensing, vol. 10(1), 2018, 112. https://doi.org/10.3390/rs10010112.
- Hernawati R., Darmawan S., Cahyanto D.: The impact of built-up area on land surface temperature derived from cloud-computing Landsat 8 imagery, [in:] Proceedings of the International Conference on Green Technology and Design (ICGTD), vol. 2020, IEEE, 2020, pp. 46–51.
- Nurwanda A.: City expansion and urban heat island in Bogor. IOP Conference Series: Earth and Environmental Science, vol. 179, 2018, 012007. https://doi.org/10.1088/1755-1315/179/1/012007.
- Fan C., Myint S.W., Kaplan S., Middel A., Zheng B., Rahman A., Huang H.-P., Brazel A., Blumberg D.G.: Understanding the impact of urbanization on surface urban heat islands – a longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sensing, vol. 9(7), 2017, 672. https://doi.org/10.3390/rs9070672.
- El-Zeiny A.M., Effat H.A.: Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications: Society and Environment, vol. 8, 2017, pp. 266–277. https://doi.org/10.1016/j.rsase.2017.10.003.
- Meng F., Liu M.: Remote-sensing image-based analysis of the patterns of urban heat islands in rapidly urbanizing Jinan, China. International Journal of Remote Sensing, vol. 34(24), 2013, pp. 8838–8853. https://doi.org/10.1080/01431161.2013.853895.
- Sharma R., Ghosh A., Joshi P.K.: Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environmental Monitoring and Assessment, vol. 185(4), 2013, pp. 3313–3325. https://doi.org/10.1007/s10661-012-2792-9.
- Tan K.C., Lim H.S., MatJafri M.Z., Abdullah K.: Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, vol. 60(7), 2010, pp. 1509–1521. https://doi.org/10.1007/s12665-009-0286-z.
- Sun C.Y., Kato S., Gou Z.: Application of low-cost sensors for urban heat island assessment: A case study in Taiwan. Sustainability, vol. 10(11), 2019, 2759. https://doi.org/10.3390/su11102759.
- Lo C.-P.: Mapping Atlanta’s land use/cover change and its impact on the environment using time sequential Landsat images. International Archives of Photogrammetry and Remote Sensing, vol. XXXIII (part B7), 2000, pp. 790–796.
- Hernawati R., Darmawan S.: The investigation of land surface temperature and vegetation in big cities of Indonesia, [in:] 44th Asian Conference on Remote Sensing (ACRS 2023), 30 October – 3 November 2023, Taipei, Taiwan, Curran Associates, Inc., Red Hook, NY, pp. 1149–1162
- Hassan T., Zhang J., Prodhan F.A., Khorshed A.K.M., Dewan A., Hassan Q.K.: Surface urban heat islands dynamics in response to LULC and vegetation across South Asia (2000–2019). Remote Sensing, vol. 13(16), 3177. https://doi.org/10.3390/rs13163177.
- Tariq A., Riaz I., Ahmad Z., Yang B., Amin M., Kausar R., Andleeb S., Farooqi M.A., Rafiq M.: Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Sciences, vol. 79(19), 2020, 681. https://doi.org/10.1007/s12665-019-8766-2.
- Mishra K., Garg R.D.: Assessing variations in land cover-land use and surface temperature dynamics for Dehradun, India, using multi-time and multi-sensor landsat data. Environmental Monitoring and Assessment, vol. 195, 2023, 373. https://doi.org/10.1007/s10661-023-10945-z.
- Naf M.Z.T., Hernawati R.: Analisis fenomena UHI (Urban Heat Island) berdasarkan hubungan antara kerapatan vegetasi dengan suhu permukaan (Studi kasus: Kota Bandung, Jawa Barat) [Analysis of the Urban Heat Island (UHI) phenomenon based on the relationship between vegetation density and land surface temperature (Case study: Bandung City, West Java)]. ITB Indonesian Journal of Geospatial, vol. 5(1), 2018, pp. 25–36.
- Meng F., Shan B., Liu M.: Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan, China. Journal of Applied Remote Sensing, vol. 8(1), 2014, 083693. https://doi.org/10.1117/1.JRS.8.083693.
- Goldblatt R., Addas A., Crull D., Crommelinck S., Elhag M., Johannsen F., Müller J., Poortinga A., Schellinger J., Syrris V., Thiel M.: Remotely sensed derived land surface temperature (LST) as a proxy for air temperature and thermal comfort at a small geographical scale. Land, vol. 10(4), 2021, 410. https://doi.org/10.3390/land10040410.
- Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, vol. 202, 2017, pp. 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
- Kumar L., Mutanga O.: Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, vol. 10(10), 2018, 1509. https://doi.org/10.3390/rs10101509.
- Pertuack S., Latue P.C.: Geographic artificial intelligence and unmanned aerial vehicles application for correlation analysis of settlement density and land surface temperature in Panggang Island Jakarta. Buana Jurnal Geografi, Ekologi dan Kebencanaan, vol. 1(1), 2023, pp. 39–47. https://doi.org/10.56211/buana.v1i1.340.
- Shi H., Xian G., Auch R., Gallo K., Zhou Q.: Urban heat island and its regional impacts using remotely sensed thermal data – a review of recent developments and methodology. Land, vol. 10(8), 2021, 867. https://doi.org/10.3390/land10080867.
- Darmawan S., Nurulhakim N.N., Hernawati R.: Kecerdasan Buatan berbasis Geospasial (GeoAI) menggunakan Google Earth Engine untuk Monitoring Fenomena Urban Heat Island di Indonesia [Geospatial Artificial Intelligence (GeoAI) Using Google Earth Engine for Monitoring the Urban Heat Island Phenomenon in Indonesia]. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 12(2), 2024, 303. https://doi.org/10.26760/elkomika.v12i2.303.
- Ramakreshnan L., Aghamohammadi N., Fong C.S., Lee L.H., Ng E., Wong N.H.: A critical review of urban heat island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustainable Cities and Society, vol. 39, 2018, pp. 99–113. https://doi.org/10.1016/j.scs.2018.02.005.
- Shen Y., Xu Y., Kong W., Li X., Zhang H., Wang J., Chen L.: Using GeoAI to reveal the contribution of urban park green space features to mitigate the heat island effect, [in:] Dokonal W., Hirschberg U., Wurzer G. (eds.), eCAADe 2023: Digital Design Reconsidered, Volume 2, Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, 20–22 September 2023, Graz University of Technology, Graz, Austria, eCAADe and Graz University of Technology Faculty of Architecture, 2023, pp. 49–58.
- Mohamed O.Y.A., Zahidi I.: Artificial intelligence for predicting urban heat island effect and optimising land use/land cover for mitigation: Prospects and recent advancements. Urban Climate, vol. 55, 2024, 101976. https://doi.org/10.1016/j.uclim.2024.101976.
- Degefu M.A., Argaw M., Feyisa G.L., Degefa S.: Regional and urban heat island studies in megacities: A systematic analysis of research methodology. Indoor and Built Environment, vol. 31(7), 2022, pp. 1775–1786. https://doi.org/10.1177/1420326X211061491.
- Babalola O.S., Akinsanola A.A.: Change detection in land surface temperature and land use land cover over Lagos Metropolis, Nigeria. Journal of Remote Sensing & GIS, vol. 5(3), 2016, 1000171. https://doi.org/10.4172/2469-4134.1000171.
- Kunkel K.E., Changnon S.A., Reinke B.C., Pielke R.A., Changnon D., Sylves R.T., Arritt R.W.: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bulletin of the American Meteorological Society, vol. 77(7), 1996, pp. 1507–1518. https://doi.org/10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.
- Conti S., Meli P., Minelli G., Solimini R., Toccaceli V., Vichi M., Beltrano C., Perini L.: Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environmental Research, vol. 98(3), 2005, pp. 390–399. https://doi.org/10.1016/j.envres.2004.10.009.
- Wu L., Tajima Y., Yamanaka Y., Shimozono T., Sato S.: Study on characteristics of SAR imagery around the coast for shoreline detection. Coastal Engineering Journal, vol. 61(2), 2018, pp. 152–170. https://doi.org/10.1080/21664250.2018.1560685.
References
Oke T.R.: The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, vol. 108(455), 1982, pp. 1–24. https://doi.org/10.1002/qj.49710845502.
Voogt J.A., Oke T.R.: Thermal remote sensing of urban climates. Remote Sensing of Environment, vol. 86(3), 2003, pp. 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8.
Wang S., Ma Q., Ding H., Liang H.: Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resources, Conservation and Recycling, vol. 128, 2018, pp. 526–534. https://doi.org/10.1016/j.resconrec.2016.05.011.
Xiong Y., Huang S., Chen F., Ye H., Wang C., Zhu C.: The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing, vol. 4(7), 2012, pp. 2033–2056. https://doi.org/10.3390/rs4072033.
Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L.: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, vol. 114(3), 2010, pp. 504–513. https://doi.org/10.1016/j.rse.2009.10.008.
MetLink – Royal Meteorological Society: Urban Heat Islands. 2013. https://www.metlink.org/fieldwork-resource/urban-heat-island-introduction/ [access: 27.06.2024].
Pal S., Ziaul S.: Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian Journal of Remote Sensing and Space Science, vol. 20(1), 2017, pp. 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003.
Tosca M.G., Campbell J., Garay M., Lolli S., Seidel F.C., Marquis J., Kalashnikova O.: Attributing accelerated summertime warming in the southeast United States to recent reductions in aerosol burden: Indications from vertically-resolved observations. Remote Sensing, vol. 9(7), 2017, 674. https://doi.org/10.3390/rs9070674.
IPCC: Global Warming of 1.5°C: Headline Statements from the Summary for Policymakers, [in:] Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, 2018, pp. 1–2.
Zhou D., Xiao J., Bonafoni S., Berger C., Deilami K., Zhou Y., Frolking S., Yao R., Qiao Z., Sobrino J.A.: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, vol. 11(1), 2019, 48. https://doi.org/10.3390/rs11010048.
Na N., Xu D., Fang W., Pu Y., Liu Y., Wang H.: Automatic detection and dynamic analysis of urban heat islands based on Landsat images. Remote Sensing, vol. 15(16), 2023, 4006. https://doi.org/10.3390/rs15164006.
Carmin J., Nadkarni N., Rhie C.: Progress and Challenges in Urban Climate Adaptation Planning: Results of a Global Survey. MIT, Cambridge 2012. https://www.cakex.org/sites/default/files/documents/Urban_Adaptation_Report_23May2012.pdf [access: 21.05.2023].
Duncan J.M.A., Boruff B., Saunders A., Sun Q., Hurley J., Amati M.: Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, vol. 656, 2019, pp. 118–128. https://doi.org/10.1016/j.scitotenv.2018.11.223.
Soux A., Voogt J.A., Oke T.R.: A model to calculate what a remote sensor “sees” of an urban surface. Boundary-Layer Meteorology, vol. 112(2), 2004, pp. 109–132. https://doi.org/10.1023/B:BOUN.0000027978.21230.b7.
Yuan Y., Santamouris M., Xu D., Geng X., Li C., Cheng W., Su L., Xiong P., Fan Z., Wang X., Liao C.: Surface urban heat island effects intensify more rapidly in lower income countries. npj Urban Sustainability, vol. 5, 2025, 11. https://doi.org/10.1038/s42949-025-00198-9.
Tepanosyan G., Muradyan V., Hovsepyan A., Pinigin G., Medvedev A., Asmaryan S.: Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Building and Environment, vol. 187, 2021, 107390. https://doi.org/10.1016/j.buildenv.2020.107390.
Weng Q., Larson R.C.: Satellite remote sensing of urban heat islands: Current practice and prospects, [in:] Jensen R.R., Gatrell J.D., McLean D.D. (eds.), Geo-Spatial Technologies in Urban Environments: Policy, Practice, and Pixels, Springer, Berlin, Heidelberg 2005, pp. 91–111. https://doi.org/10.1007/3-540-26676-3_10.
Frey C.M., Kuenzer C.: Analysing a 13 years MODIS land surface temperature time series in the Mekong Basin, [in:] Kuenzer C., Dech S., Wagner W. (eds.), Remote Sensing Time Series: Revealing Land Surface Dynamics, Remote Sensing and Digital Image Processing, vol. 22, Springer, Cham 2015, pp. 119–140. https://doi.org/10.1007/978-3-319-15967-6_6.
Nill L., Ullmann T., Kneisel C., Sobiech-Wolf J., Baumhauer R.: Assessing spatiotemporal variations of Landsat land surface temperature and multispectral indices in the Arctic Mackenzie Delta region between 1985 and 2018. Remote Sensing, vol. 11(19), 2019, 2329. https://doi.org/10.3390/rs11192329.
Wan Z., Dozier J.: Viewing-angle dependent split-window method for retrieving land-surface temperatures from space, [in:] Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 1995, pp. 1665–1667. https://doi.org/10.1109/IGARSS.1995.521176.
Tian L., Li Y., Lu J., Wang J.: Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability, vol. 13(2), 2021, 762. https://doi.org/10.3390/su13020762.
Yang C., Wu G., Chen J., Li Q., Ding K., Wang G., Zhang C.: Simulating and forecasting spatio-temporal characteristic of land-use/cover change with numerical model and remote sensing: A case study in Fuxian Lake Basin, China. European Journal of Remote Sensing, vol. 52(1), 2019, pp. 374–384. https://doi.org/10.1080/22797254.2019.1611387.
Ramakreshnan L., Aghamohammadi N., Fong C.S., Ghaffarianhoseini A., Ghaffarianhoseini A., Wong L.P., Hassan N., Sulaiman N.M.: A critical review of urban heat island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustainable Cities and Society, vol. 39, 2018, pp. 99–113. https://doi.org/10.1016/j.scs.2018.02.005.
Pahlevan-Sharif S., Mura P., Wijesinghe S.N.R.: A systematic review of systematic reviews in tourism. Journal of Hospitality and Tourism Management, vol. 39, 2019, pp. 158–165. https://doi.org/10.1016/j.jhtm.2019.04.001.
Hernawati R., Wikantika K., Darmawan S.: Modeling of oil palm phenology based on remote sensing data: Opportunities and challenges. Journal of Applied Remote Sensing, vol. 16(2), 2022, 021501. https://doi.org/10.1117/1.jrs.16.021501.
Bustos Navarrete C., Morales Malverde M.G., Salcedo Lagos P., Díaz Mujica A.: Buhos: A web-based systematic literature review management software. SoftwareX, vol. 7, 2018, pp. 360–372. https://doi.org/10.1016/j.softx.2018.10.004.
Popay J., Roberts H., Sowden A., Petticrew M., Britten N., Arai L., Roen K., Rodgers M.: Developing guidance on the conduct of narrative synthesis in systematic reviews. Journal of Epidemiology and Community Health, vol. 59 (Suppl. 1), 2005, A7.
Ngie A., Abutaleb K., Ahmed F., Darwish A., Ahmed M.: Assessment of urban heat island using satellite remotely sensed imagery: A review. South African Geographical Journal, vol. 96(2), 2014, pp. 198–214. https://doi.org/10.1080/03736245.2014.924864.
Saleem M.S., Ahmad S.R., Shafiq-Ur-Rehman, Javed M.A.: Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: A case study of Lahore, Faisalabad and Multan district. Environmental Science and Pollution Research, vol. 27(32), 2020, pp. 39865–39878. https://doi.org/10.1007/s11356-020-10050-5.
Freitas S.C., Trigo I.F., Macedo J., Barroso C., Silva R., Perdigão R.: Land surface temperature from multiple geostationary satellites. International Journal of Remote Sensing, vol. 34(9–10), 2013, pp. 3051–3068. https://doi.org/10.1080/01431161.2012.716925.
Almeida J., dos Santos J.A., Alberton B., Torres R.D.S., Morellato L.P.C.: Remote phenology: Applying machine learning to detect phenological patterns in a cerrado savanna, [in:] 2012 IEEE 8th International Conference on E-Science (e-Science), IEEE, 2012, pp. 1–8. https://doi.org/10.1109/eScience.2012.6404438.
Wang M., Zhang Z.Z., Hu T., Wang G., He G., Zhang Z.: An efficient framework for producing Landsat-based land surface temperature data using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 4689–4701. https://doi.org/10.1109/JSTARS.2020.3014586.
Dewa D.D., Buchori I.: Impacts of rapid urbanization on spatial dynamics of land use-based carbon emission and surface temperature changes in the Semarang Metropolitan Region, Indonesia. Environmental Monitoring and Assessment, vol. 195(2), 2023, 259. https://doi.org/10.1007/s10661-022-10839-6.
Tariq A., Shu H.: CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sensing, vol. 12(20), 2020, 3402. https://doi.org/10.3390/rs12203402.
Deilami K., Kamruzzaman M., Liu Y.: Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, vol. 67, 2018, pp. 30–42. https://doi.org/10.1016/j.jag.2017.12.009.
Aslan N., Koc-San D.: Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XLI-B8, 2016, pp. 821–828. https://doi.org/10.5194/isprs-archives-XLI-B8-821-2016.
Al Kafy A., Al Faisal A., Shuvo R.M., Naim M.N.H., Sikdar M.S., Chowdhury R.R., Islam M.A., Sarker M.H.S., Khan M.H.H., Kona M.A.: Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sensing Applications: Society and Environment, vol. 21, 2021, 100463. https://doi.org/10.1016/j.rsase.2020.100463.
Shukla S.S., Jaiswal V.: Applicability of artificial intelligence in different fields of life. International Journal of Scientific Engineering and Research (IJSER), vol. 1(1), 2013, pp. 28–35. https://www.doi.org/10.70729/1130915.
Moazzam M.F.U., Doh Y.H., Lee B.G.: Impact of urbanization on land surface temperature and surface urban heat island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Building and Environment, vol. 222, 2022, 109368. https://doi.org/10.1016/j.buildenv.2022.109368.
Li Z.L., Tang B.H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A.: Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, vol. 131, 2013, pp. 14–37. https://doi.org/10.1016/j.rse.2012.12.008.
Wan Z., Wang P., Li X.: Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, vol. 25(1), 2004, pp. 61–72. https://doi.org/10.1080/0143116031000115328.
Almeida C.R., de, Furst L., Gonçalves A., Teodoro A.C.: Remote sensing imagebased analysis of the urban heat island effect in Bragança, Portugal. Environments, vol. 9(8), 2022, 98. https://doi.org/10.3390/environments9080098.
Neumann W., Martinuzzi S., Estes A.B., Pidgeon A.M., Dettki H., Ericsson G., Radeloff V.C.: Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Movement Ecology, vol. 3(1), 2015, 8. https://doi.org/10.1186/s40462-015-0036-7.
Khalil U., Aslam B., Azam U., Khalid H.M.D. Time series analysis of land surface temperature and drivers of urban heat island effect based on remotely sensed data to develop a prediction model. Applied Artificial Intelligence, vol. 35(15), 2021, pp. 1803–1828. https://doi.org/10.1080/08839514.2021.1993633.
Zoran M.A., Savastru R., Savastru D., Tautan M.N., Penache A.C.: Spatiotemporal changes of urban land surface albedo impact on thermal environment in Bucharest Metropolitan City. WSEAS Transactions on Environment and Development, vol. 19, 2023, pp. 1037–1044. https://doi.org/10.37394/232015.2023.19.98
Wu W., Ren H., Yu M., Wang Z.: Distinct influences of urban villages on urban heat islands: A case study in the Pearl River Delta, China. International Journal of Environmental Research and Public Health, vol. 15(8), 2018, 1666. https://doi.org/10.3390/ijerph15081666.
Lu Y., Yang J., Ma S.: Dynamic changes of local climate zones in the Guangdong–Hong Kong–Macao Greater Bay Area and their spatio-temporal impacts on the surface urban heat island effect between 2005 and 2015. Sustainability, vol. 13(11), 2021, 6374. https://doi.org/10.3390/su13116374.
Li Z.-L., Si M., Leng P.: Review of remotely sensed surface urban heat islands from the fresh perspective of comparisons among different regions. Progress in Electromagnetics Research C, vol. 102, 2020, pp. 31–46. https://doi.org/10.2528/PIERC20020403.
Parastatidis D., Mitraka Z., Chrysoulakis N., Abrams M.: Online global land surface temperature estimation from Landsat. Remote Sensing, vol. 9(12), 2017, 1208. https://doi.org/10.3390/rs9121208.
Abrams M., Tsu H., Hulley G., Iwao K., Pieri D., Cudahy T., Kargel J.: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, vol. 38, 2015, pp. 292–301. https://doi.org/10.1016/j.jag.2015.01.013.
Addas A.: Machine learning techniques to map the impact of urban heat island: Investigating the city of Jeddah. Land, vol. 12(6), 2023, 1159. https://doi.org/10.3390/land12061159.
Vermote E., Roger J.C., Franch B., Skakun S.: LASRC (Land SurReflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s, [in:] 2018 IEEE International Geoscience & Remote Sensing Symposium: Proceedings: July 22–27, 2018, Valencia, Spain, IEEE, Piscataway 2018, pp. 8173–8176. https://doi.org/10.1109/IGARSS.2018.8517622.
USGS (United States Geological Survey): Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product [access: 2.07.2024].
Fashae O., Adagbasa E., Olusola A., Obateru R.: Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria. Environmental Monitoring and Assessment, vol. 192, 2020, 109. https://doi.org/10.1007/s10661-019-8054-3.
Kumari B., Tayyab M., Shahfahad, Salman, Mallick J., Khan M.F., Rahman A.: Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ LC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing in Earth Systems Sciences, vol. 1(3–4), 2018, pp. 63–78. https://doi.org/10.1007/s41976-018-0004-2.
Jiménez-Muñoz J.C., Sobrino J.A., Skoković D., Mattar C., Cristóbal J.: Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, vol. 11(10), 2014, pp. 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032.
Karnieli A., Ohana-Levi N., Silver M., Paz-Kagan T., Panov N., Varghese D., Chrysoulakis N., Provenzale A.: Spatial and seasonal patterns in vegetation growth-limiting factors over Europe. Remote Sensing, vol. 11(20), 2019, 2406. https://doi.org/10.3390/rs11202406.
Stathopoulou M., Cartalis C.: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, vol. 81(3), 2007, pp. 358–368. https://doi.org/10.1016/j.solener.2006.06.014.
Qin Z., Karnieli A., Berliner P.: A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing, vol. 22(18), 2001, pp. 3719–3746. https://doi.org/10.1080/01431160010006971.
McMillin L.M.: Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, vol. 80(36), 1975, pp. 5113–5117. https://doi.org/10.1029/JC080i036p05113.
Jiménez-Muñoz J.C., Sobrino J.A.: A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, vol. 108(D22), 2003, 4688. https://doi.org/10.1029/2003JD003480.
Wang L., Lu Y., Yao Y.: Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images. Sensors, vol. 19(22), 2019, 5049. https://doi.org/10.3390/s19225049.
Wang F., Qin Z., Song C., Tu L., Karnieli A., Zhao S.: An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 Thermal Infrared Sensor data. Remote Sensing, vol. 7(4), 2015, pp. 4268–4289. https://doi.org/10.3390/rs70404268.
Sismanidis P., Bechtel B., Perry M., Ghent D.: The seasonality of surface urban heat islands across climates. Remote Sensing, vol. 14(10), 2022, 2318. https://doi.org/10.3390/rs14102318.
Vallet A., Dupuy S., Verlynde M., Gaetano R.: Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning. Scientific Data, vol. 11, 2024, 915. https://doi.org/10.1038/s41597-024-03750-x.
Kafy A.-A., Rahman M.S., Faisal A.-A., Hasan M.M., Islam M.: Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, vol. 18, 2020, 100314. https://doi.org/10.1016/j.rsase.2020.100314.
Kafy A.-A., Faisal A.-A., Rahman M.S., Islam M., Al Rakib A., Islam M.A., Khan M.H.H., Sikdar M.S., Sarker M.H.S., Mawa J., Sattar G.S.: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, vol. 64, 2021, 102542. https://doi.org/10.1016/j.scs.2020.102542.
Wang M., He G., Zhang Z., Wang G., Wang Z., Yin R., Cui S., Wu Z., Cao X.: A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. International Journal of Applied Earth Observation and Geoinformation, vol. 76, 2019, pp. 204–217. https://doi.org/10.1016/j.jag.2018.11.015.
Zareie S., Khosravi H., Nasiri A., Dastorani M.: Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth, vol. 7(6), 2016, pp. 1551–1564. https://doi.org/10.5194/se-7-1551-2016.
Feyisa G.L., Meilby H., Jenerette G.D., Pauliet S.: Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sensing of Environment, vol. 175, 2016, pp. 14–31. https://doi.org/10.1016/j.rse.2015.12.026.
Zoran M.A., Savastru R.S., Savastru D.M., Dida A.: Impacts of urban growth and heat waves events on the urban heat island in Bucharest city, [in:] Remote Sensing Technologies and Applications in Urban Environments, Proceedings of SPIE, vol. 10008, SPIE, 2016, 1000813. https://doi.org/10.1117/12.2241360.
Nanjam R., Farnood Ahmadi F.: A new spatiotemporal model for analyzing the variations of urban heat islands using remotely sensed multi spectral images: The case of Mashhad City, Iran. Journal of the Indian Society of Remote Sensing, vol. 49(10), 2021, pp. 2489–2502. https://doi.org/10.1007/s12524-021-01404-8.
Kayet N., Pathak K., Chakrabarty A., Sahoo S.: Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research, vol. 24(5), 2016, pp. 515–529. https://doi.org/10.1007/s41324-016-0049-3.
Le M.T., Bakaeva N.: A technique for generating preliminary satellite data to evaluate SUHI using cloud computing: A case study in Moscow, Russia. Remote Sensing, vol. 15(13), 2023, 3294. https://doi.org/10.3390/rs15133294.
Kafy A.-A., Faisal A.-A., Rahman M.S., Islam M., Rakib A.-A., Islam M.A., Khan M.H.H., Sikdar M.S., Sarker M.H.S., Mawa J., Sattar G.S.: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, vol. 64, 2021, 102542. https://doi.org/10.1016/j.scs.2020.102542.
Verma P., Raghubanshi A.S., Srivastava P.K., Raghubanshi A.S.R.: Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment, vol. 6(2), 2020, pp. 1045–1059. https://doi.org/10.1007/s40808-020-00740-x.
Shukla A., Jain K.: Critical analysis of rural-urban transitions and transformations in Lucknow city, India. Remote Sensing Applications: Society and Environment, vol. 13, 2019, pp. 445–456. https://doi.org/10.1016/j.rsase.2019.01.001.
Mushore T.D., Dube T., Manjowe M., Gumindoga W., Chemura A., Rousta I., Odindi J., Mutanga O.: Remotely sensed retrieval of local climate zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Climate, vol. 27, 2019, pp. 259–271. https://doi.org/10.1016/j.uclim.2018.12.006.
Chaka D.S., Oda T.K.: Understanding land surface temperature on rift areas to examine the spatial variation of urban heat island: The case of Hawassa, southern Ethiopia. GeoJournal, vol. 86(2), 2021, pp. 993–1014. https://doi.org/10.1007/s10708-019-10110-5.
Tarawally M., Xu W., Hou W., Mushore T.D.: Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and inland city: A case of Freetown and Bo Town in Sierra Leone. Remote Sensing, vol. 10(1), 2018, 112. https://doi.org/10.3390/rs10010112.
Hernawati R., Darmawan S., Cahyanto D.: The impact of built-up area on land surface temperature derived from cloud-computing Landsat 8 imagery, [in:] Proceedings of the International Conference on Green Technology and Design (ICGTD), vol. 2020, IEEE, 2020, pp. 46–51.
Nurwanda A.: City expansion and urban heat island in Bogor. IOP Conference Series: Earth and Environmental Science, vol. 179, 2018, 012007. https://doi.org/10.1088/1755-1315/179/1/012007.
Fan C., Myint S.W., Kaplan S., Middel A., Zheng B., Rahman A., Huang H.-P., Brazel A., Blumberg D.G.: Understanding the impact of urbanization on surface urban heat islands – a longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sensing, vol. 9(7), 2017, 672. https://doi.org/10.3390/rs9070672.
El-Zeiny A.M., Effat H.A.: Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications: Society and Environment, vol. 8, 2017, pp. 266–277. https://doi.org/10.1016/j.rsase.2017.10.003.
Meng F., Liu M.: Remote-sensing image-based analysis of the patterns of urban heat islands in rapidly urbanizing Jinan, China. International Journal of Remote Sensing, vol. 34(24), 2013, pp. 8838–8853. https://doi.org/10.1080/01431161.2013.853895.
Sharma R., Ghosh A., Joshi P.K.: Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environmental Monitoring and Assessment, vol. 185(4), 2013, pp. 3313–3325. https://doi.org/10.1007/s10661-012-2792-9.
Tan K.C., Lim H.S., MatJafri M.Z., Abdullah K.: Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, vol. 60(7), 2010, pp. 1509–1521. https://doi.org/10.1007/s12665-009-0286-z.
Sun C.Y., Kato S., Gou Z.: Application of low-cost sensors for urban heat island assessment: A case study in Taiwan. Sustainability, vol. 10(11), 2019, 2759. https://doi.org/10.3390/su11102759.
Lo C.-P.: Mapping Atlanta’s land use/cover change and its impact on the environment using time sequential Landsat images. International Archives of Photogrammetry and Remote Sensing, vol. XXXIII (part B7), 2000, pp. 790–796.
Hernawati R., Darmawan S.: The investigation of land surface temperature and vegetation in big cities of Indonesia, [in:] 44th Asian Conference on Remote Sensing (ACRS 2023), 30 October – 3 November 2023, Taipei, Taiwan, Curran Associates, Inc., Red Hook, NY, pp. 1149–1162
Hassan T., Zhang J., Prodhan F.A., Khorshed A.K.M., Dewan A., Hassan Q.K.: Surface urban heat islands dynamics in response to LULC and vegetation across South Asia (2000–2019). Remote Sensing, vol. 13(16), 3177. https://doi.org/10.3390/rs13163177.
Tariq A., Riaz I., Ahmad Z., Yang B., Amin M., Kausar R., Andleeb S., Farooqi M.A., Rafiq M.: Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Sciences, vol. 79(19), 2020, 681. https://doi.org/10.1007/s12665-019-8766-2.
Mishra K., Garg R.D.: Assessing variations in land cover-land use and surface temperature dynamics for Dehradun, India, using multi-time and multi-sensor landsat data. Environmental Monitoring and Assessment, vol. 195, 2023, 373. https://doi.org/10.1007/s10661-023-10945-z.
Naf M.Z.T., Hernawati R.: Analisis fenomena UHI (Urban Heat Island) berdasarkan hubungan antara kerapatan vegetasi dengan suhu permukaan (Studi kasus: Kota Bandung, Jawa Barat) [Analysis of the Urban Heat Island (UHI) phenomenon based on the relationship between vegetation density and land surface temperature (Case study: Bandung City, West Java)]. ITB Indonesian Journal of Geospatial, vol. 5(1), 2018, pp. 25–36.
Meng F., Shan B., Liu M.: Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan, China. Journal of Applied Remote Sensing, vol. 8(1), 2014, 083693. https://doi.org/10.1117/1.JRS.8.083693.
Goldblatt R., Addas A., Crull D., Crommelinck S., Elhag M., Johannsen F., Müller J., Poortinga A., Schellinger J., Syrris V., Thiel M.: Remotely sensed derived land surface temperature (LST) as a proxy for air temperature and thermal comfort at a small geographical scale. Land, vol. 10(4), 2021, 410. https://doi.org/10.3390/land10040410.
Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, vol. 202, 2017, pp. 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Kumar L., Mutanga O.: Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, vol. 10(10), 2018, 1509. https://doi.org/10.3390/rs10101509.
Pertuack S., Latue P.C.: Geographic artificial intelligence and unmanned aerial vehicles application for correlation analysis of settlement density and land surface temperature in Panggang Island Jakarta. Buana Jurnal Geografi, Ekologi dan Kebencanaan, vol. 1(1), 2023, pp. 39–47. https://doi.org/10.56211/buana.v1i1.340.
Shi H., Xian G., Auch R., Gallo K., Zhou Q.: Urban heat island and its regional impacts using remotely sensed thermal data – a review of recent developments and methodology. Land, vol. 10(8), 2021, 867. https://doi.org/10.3390/land10080867.
Darmawan S., Nurulhakim N.N., Hernawati R.: Kecerdasan Buatan berbasis Geospasial (GeoAI) menggunakan Google Earth Engine untuk Monitoring Fenomena Urban Heat Island di Indonesia [Geospatial Artificial Intelligence (GeoAI) Using Google Earth Engine for Monitoring the Urban Heat Island Phenomenon in Indonesia]. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 12(2), 2024, 303. https://doi.org/10.26760/elkomika.v12i2.303.
Ramakreshnan L., Aghamohammadi N., Fong C.S., Lee L.H., Ng E., Wong N.H.: A critical review of urban heat island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustainable Cities and Society, vol. 39, 2018, pp. 99–113. https://doi.org/10.1016/j.scs.2018.02.005.
Shen Y., Xu Y., Kong W., Li X., Zhang H., Wang J., Chen L.: Using GeoAI to reveal the contribution of urban park green space features to mitigate the heat island effect, [in:] Dokonal W., Hirschberg U., Wurzer G. (eds.), eCAADe 2023: Digital Design Reconsidered, Volume 2, Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, 20–22 September 2023, Graz University of Technology, Graz, Austria, eCAADe and Graz University of Technology Faculty of Architecture, 2023, pp. 49–58.
Mohamed O.Y.A., Zahidi I.: Artificial intelligence for predicting urban heat island effect and optimising land use/land cover for mitigation: Prospects and recent advancements. Urban Climate, vol. 55, 2024, 101976. https://doi.org/10.1016/j.uclim.2024.101976.
Degefu M.A., Argaw M., Feyisa G.L., Degefa S.: Regional and urban heat island studies in megacities: A systematic analysis of research methodology. Indoor and Built Environment, vol. 31(7), 2022, pp. 1775–1786. https://doi.org/10.1177/1420326X211061491.
Babalola O.S., Akinsanola A.A.: Change detection in land surface temperature and land use land cover over Lagos Metropolis, Nigeria. Journal of Remote Sensing & GIS, vol. 5(3), 2016, 1000171. https://doi.org/10.4172/2469-4134.1000171.
Kunkel K.E., Changnon S.A., Reinke B.C., Pielke R.A., Changnon D., Sylves R.T., Arritt R.W.: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bulletin of the American Meteorological Society, vol. 77(7), 1996, pp. 1507–1518. https://doi.org/10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.
Conti S., Meli P., Minelli G., Solimini R., Toccaceli V., Vichi M., Beltrano C., Perini L.: Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environmental Research, vol. 98(3), 2005, pp. 390–399. https://doi.org/10.1016/j.envres.2004.10.009.
Wu L., Tajima Y., Yamanaka Y., Shimozono T., Sato S.: Study on characteristics of SAR imagery around the coast for shoreline detection. Coastal Engineering Journal, vol. 61(2), 2018, pp. 152–170. https://doi.org/10.1080/21664250.2018.1560685.