Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
PyLiGram – Research Application for LiDAR Data Processing Based on Photogrammetric Methods
Corresponding Author(s) : Antoni Rzonca
Geomatics and Environmental Engineering,
Vol. 19 No. 4 (2025): Geomatics and Environmental Engineering
Abstract
This paper presents the functionality and research possibilities of an application that is based on two concepts: the use of photogrammetric analysis for LiDAR data processing (lidargrammetry), and the assignments of identifiers to cloud points in order to be able to return to the original points after processing without data loss and redundant processing.
The research tool has, thus far, been developed for the implementation of two distinct LiDAR data-enhancement processes. The initial approach involves the altimetric transformation of the LiDAR data (a process that is founded on the principles of stereo model deformation theory), and the second process employs lidargrammetry for the purpose of 3D local point-cloud corrections, global changes, or non-rigid transformation. This is achieved by applying blocks of lidargrams and their subsequent matching and adjustments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Baltsavias E.P.: Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54(2–3), 1999, pp. 199–214. https://doi.org/10.1016/S0924-2716(99)00015-5.
- Toth C., Jóźków G.: Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, 2016, pp. 22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004.
- Cheng L., Chen S., Liu X., Xu H., Wu Y., Li M., Chen Y.: Registration of laser scanning point clouds: A review. Sensors (Switzerland), vol. 18(5), 2018, 1641. https://doi.org/10.3390/s18051641.
- Li X., Liu C., Wang Z., Xie X., Li D., Xu L.: Airborne LiDAR: State-of-the-art of system design, technology and application. Measurement Science and Technology, vol. 32(3), 2020, 032002. https://doi.org/10.1088/1361-6501/abc867.
- Bakuła K., Salach A., Zelaya Wziątek D., Ostrowski W., Górski K., Kurczyński Z.: Evaluation of the accuracy of LiDAR data acquired using a UAS for levee monitoring: Preliminary results. International Journal of Remote Sensing, vol. 38(8–10), 2017, pp. 2921–2937. https://doi.org/10.1080/01431161.2016.1277044.
- Rivera G., Porras R., Florencia R., Sánchez-Solís J.P.: LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Computers and Electronics in Agriculture, vol. 207, 2023, 107737. https://doi.org/10.1016/j.compag.2023.107737.
- Dainelli R., Toscano P., Di Gennaro S.F., Matese A.: Recent advances in unmanned aerial vehicles forest remote sensing – a systematic review. Part II: Research applications. Forests, vol. 12(4), 2021, 397. https://doi.org/10.3390/f12040397.
- Guimarães N., Pádua L., Marques P., Silva N., Peres E., Sousa J.J.: Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sensing, vol. 12(6), 2020, 1046. https://doi.org/10.3390/rs12061046.
- Barclay N., Smith M.: Assessment of advanced LiDAR based tools for enhanced flood prediction, [in:] SoutheastCon 2021, IEEE, 2021, pp. 1–5. https://doi.org/10.1109/SoutheastCon45413.2021.9401895.
- Dreier A., Kuhlmann H., Klingbeil L.: The potential of UAV-based laser scanning for deformation monitoring – case study on a water dam, [in:] 5th Joint International Symposium on Deformation Monitoring (JISDM), 20–22 June 2022, Valencia, Spain, Editorial Universitat Politècnica de València, 2023, pp. 261–269. https://doi.org/10.4995/jisdm2022.2022.13833.
- Rashdi R., Martínez-Sánchez J., Arias P., Qiu Z.: Scanning technologies to building information modelling: A review. Infrastructures, vol. 7(4), 2022, 49. https://doi.org/10.3390/infrastructures7040049.
- Lenda G., Borowiec N., Marmol U.: Study of the precise determination of pipeline geometries using UAV scanning compared to terrestrial scanning, aerial scanning and UAV photogrammetry. Sensors, vol. 23(19), 2023, 8257. https://doi.org/10.3390/s23198257.
- Azevedo F., Dias A., Almeida J., Oliveira A., Ferreira A., Santos T., Martins A., Silva E.: LiDAR-based real-time detection and modeling of power lines for unmanned aerial vehicles. Sensors (Switzerland), vol. 19(8), 2019, 1812. https://doi.org/10.3390/s19081812.
- McCoy M.D., Casana J., Hill A.C., Laugier E.J., Mulrooney M.A., Ladefoged T.N.: Unpiloted aerial vehicle acquired lidar for mapping monumental architecture. Advances in Archaeological Practice, vol. 9(2), 2021, pp. 160–174. https://doi.org/10.1017/aap.2021.5.
- Masini N., Abate N., Gizzi F.T., Vitale V., Minervino Amodio A., Sileo M., Biscione M., Lasaponara R., Bentivenga M., Cavalcante F.: UAV LiDAR based approach for the detection and interpretation of archaeological micro topography under canopy – the rediscovery of Perticara (Basilicata, Italy). Remote Sensing, vol. 14(23), 2022, 6074. https://doi.org/10.3390/rs14236074.
- May N.C., Toth C.K.: Point positioning accuracy of airborne LIDAR systems: A rigorous analysis. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-3/W49B, 2007, pp. 107–111.
- Glennie C.: Rigorous 3D error analysis of kinematic scanning LIDAR systems. Journal of Applied Geodesy, vol. 1(3), 2008, pp. 147–157. https://doi.org/10.1515/jag.2007.017.
- Schaer P., Skaloud J., Landtwing S., Legat K.: Accuracy estimation for laser point cloud including scanning geometry. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-5/C55, 2007, pp. 1–8.
- Bang K.I., Habib A., Kersting A.: Estimation of biases in lidar system calibration parameters using overlapping strips. Canadian Journal of Remote Sensing, vol. 36(2), 2010, pp. S335–S354. https://doi.org/10.5589/m10-054.
- Li Z., Tan J., Liu H.: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment. Remote Sensing, vol. 11(4), 2019, 442. https://doi.org/10.3390/rs11040442.
- Lv J., Xu J., Hu K., Liu Y., Zuo X.: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation, [in:] IEEE International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 9968–9975. https://doi.org/10.1109/IROS45743.2020.9341405.
- Lv J., Zuo X., Hu K., Xu J., Huang G., Liu Y.: Observability-aware intrinsic and extrinsic calibration of LiDAR-IMU systems. IEEE Transactions on Robotics, vol. 38(6), 2022, pp. 3734–3753. https://doi.org/10.1109/TRO.2022.3174476.
- Glira P., Pfeifer N., Mandlburger G.: Rigorous strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogrammetric Engineering & Remote Sensing, vol. 82(12), 2016, pp. 945–954. https://doi.org/10.14358/PERS.82.12.945.
- Yuan W., Choi D., Bolkas D.: GNSS-IMU-assisted colored ICP for UAV-LiDAR point cloud registration of peach trees. Computers and Electronics in Agriculture, vol. 197, 2022, 106966. https://doi.org/10.1016/j.compag.2022.106966.
- Favalli M., Fornaciai A., Pareschi M.T.: LIDAR strip adjustment: Application to volcanic areas. Geomorphology, vol. 111(3–4), 2009, pp. 123–135. https://doi.org/10.1016/j.geomorph.2009.04.010.
- Gressin A., Mallet C., Demantké J., David N.: Towards 3D LIDAR point cloud registration improvement using optimal neighborhood knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 79, 2013, pp. 240–251. https://doi.org/10.1016/j.isprsjprs.2013.02.019.
- Tam G.K.L., Cheng Z.Q., Lai Y.K., Langbein F.C., Liu Y., Marshall D., Martin R.R., Sun X.F., Rosin P.L.: Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, vol. 19(7), 2013, pp. 1199–1217. https://doi.org/10.1109/TVCG.2012.310.
- Glira P., Pfeifer N., Briese C., Ressl C.: Rigorous strip adjustment of airborne laserscanning data based on the ICP algorithm. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3/W5, 2015, pp. 73–80. https://doi.org/10.5194/isprsannals-II-3-W5-73-2015.
- Brun A., Cucci D.A., Skaloud J.: Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 189, 2022, pp. 185–200. https://doi.org/10.1016/j.isprsjprs.2022.04.027.
- Kuçak R.A., Erol S., Erol B.: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm. Arabian Journal of Geosciences, vol. 15(11), 2022, 1017. https://doi.org/10.1007/s12517-022-10303-2.
- Csanyi N., Toth C.K., Grejner-Brzezinska D., Ray J.: Improvement of LiDAR data accuracy using LiDAR specific ground targets, [in:] American Society for Photogrammetry and Remote Sensing – Annual Conference 2005 – Geospatial Goes Global: From Your Neighborhood to Whole Planet. Vol. 1, American Society for Photogrammetry and Remote Sensing (ASPRS), 2005, pp. 152–162.
- Chen Z., Li J., Yang B.: A strip adjustment method of UAV-borne LiDAR point cloud based on DEM features for mountainous area. Sensors, vol. 21(8), 2021, pp. 1–20. https://doi.org/10.3390/s21082782.
- Villena-Martinez V., Oprea S., Saval-Calvo M., Azorin-Lopez J., FusterGuillo A., Fisher R.B.: When deep learning meets data alignment: A review on deep registration networks (DRNs). Applied Sciences, vol. 10(21), 2020, 7524. https://doi.org/10.3390/app10217524.
- Guo Y., Wang H., Hu Q., Liu H., Liu L., Bennamoun M.: Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43(12), 2021, pp. 4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434.
- Gupta A., Fernando X.: Simultaneous localization and mapping (SLAM) and data fusion in unmanned aerial vehicles: Recent advances and challenges. Drones, vol. 6(4), 2022, 85. https://doi.org/10.3390/drones6040085.
- Ressl C., Kager H., Mandlburger G.: Quality checking of ALS projects using statistics of strip differences. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII-B3b, 2008, pp. 253–260.
- Habib A., Kersting A.P., Bang K.I., Lee D.C.: Alternative methodologies for the internal quality control of parallel LiDAR strips. IEEE Transactions on Geoscience and Remote Sensing, vol. 48(1), 2010, pp. 221–236. https://doi.org/10.1109/TGRS.2009.2026424.
- Ressl C., Mandlburger G., Pfeifer N.: Investigating adjustment of airborne laser scanning strips without usage of GNSS/IMU trajectory data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-3/W8, 2009, pp. 195–200.
- Tulldahl H.M., Bissmarck F., Larsson H., Grönwall C., Tolt G.: Accuracy evaluation of 3D lidar data from small UAV. SPIE Proceedings, vol. 9649 [ElectroOptical Remote Sensing, Photonic Technologies, and Applications IX], 2015, 964903. https://doi.org/10.1117/12.2194508.
- Stöcker C., Nex F., Koeva M., Gerke M.: Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6, 2017, pp. 355–361. https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017.
- Dreier A., Janßen J., Kuhlmann H., Klingbeil L.: Quality analysis of direct georeferencing in aspects of absolute accuracy and precision for a UAV-based laser scanning system. Remote Sensing, vol. 13(18), 2021, 3564. https://doi.org/10.3390/rs13183564.
- Mayr A., Bremer M., Rutzinger M.: 3D point errors and change detection accuracy of unmanned aerial vehicle laser scanning data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-2-2020, 2020, pp. 765–772. https://doi.org/10.5194/isprs-annals-V-2-2020-765-2020.
- Fuad N.A., Ismail Z., Majid Z., Darwin N., Ariff M.F.M., Idris K.M., Yusoff A.R.: Accuracy evaluation of digital terrain model based on different flying altitudes and conditions of terrain using UAV LiDAR technology. IOP Conference Series: Earth and Environmental Science, vol. 169, 2018, 012100. https://doi.org/10.1088/1755-1315/169/1/012100.
- Kucharczyk M., Hugenholtz C.H., Zou X.: UAV–LiDAR accuracy in vegetated terrain. Journal of Unmanned Vehicle Systems, vol. 6(4), 2018, pp. 212–234. https://doi.org/10.1139/juvs-2017-0030.
- Soininen A.: TerraMatch User Guide. 64-bit version. Terrasolid Ltd, Helsinki 2024. https://terrasolid.com/guides/tmatch.pdf [access: 29.06.2025].
- RIEGL Laser Measurement Systems GmbH: RiProcess Datasheet RiProcess Datasheet, 2022-09-01. https://www.laser-3d.pl/wp-content/uploads/RiProcess_Datasheet_2021-05-17.pdf [access: 29.07.2025].
- Lohani B., Ghosh S.: Airborne LiDAR technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A – Physical Sciences, vol. 87, 2017, pp. 567–579. https://doi.org/10.1007/s40010-017-0435-9.
- López Serrano F.R., Rubio E., García Morote F.A., Andrés Abellán M., Picazo Córdoba M.I., García Saucedo F., Martínez García E., Sánchez García J.M., Serena Innerarity J., Carrasco Lucas L., García González O., García González J.C.: Artificial intelligence-based software (AID-FOREST) for tree detection: A new framework for fast and accurate forest inventorying using LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, vol. 113, 2022, 103014. https://doi.org/10.1016/j.jag.2022.103014.
- Kumar Mishra R.: A review of optical imagery and airborne LiDAR data registration methods. Open Remote Sensing Journal, vol. 5, 2012, pp. 54–63. https://doi.org/10.2174/1875413901205010054.
- Rzonca A.: Review of methods of combined orientation of photogrammetric and laser scanning data. Measurement, Automation & Monitoring, vol. 64(3), 2018, pp. 57–62.
- Mouzakidou K., Brun A., Cucci D.A., Skaloud J.: Airborne sensor fusion: Expected accuracy and behavior of a concurrent adjustment. ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 12, 2024, 100057. https://doi.org/10.1016/j.ophoto.2023.100057.
- Kovanič Ľ., Topitzer B., Peťovský P., Blišťan P., Gergeľová M.B., Blišťanová M.: Review of photogrammetric and LiDAR applications of UAV. Applied Sciences, vol. 13(11), 2023. https://doi.org/10.3390/app13116732.
- Chen S., Ma H., Zhang Y., Zhong L., Xu J., Chen H.: Boresight calibration of airborne LiDAR system without ground control points. IEEE Geoscience and Remote Sensing Letters, vol. 9(1), 2012, pp. 85–89. https://doi.org/10.1109/LGRS.2011.2161070.
- Pentek Q., Kennel P., Allouis T., Fiorio C., Strauss O.: A flexible targetless LiDAR–GNSS/INS–camera calibration method for UAV platforms. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, 2020, pp. 294–307. https://doi.org/10.1016/j.isprsjprs.2020.05.014.
- Toschi I., Remondino F., Rothe R., Klimek K.: Combining airborne oblique camera and LiDAR sensors: Investigation and new perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-1, 2018, pp. 437–444. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018.
- Kalantar B., Ueda N., Al-Najjar H.A.H., Moayedi H., Halin A.A., Mansor S.: UAV and LiDAR image registration: A SURF-based approach for ground control points selection. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W13, 2019, pp. 413–418. https://doi.org/10.5194/isprs-archives-XLII-2-W13-413-2019.
- Habib A., Ghanma M., Morgan M., Al-Ruzouq R.: Photogrammetric and LiDAR data registration using linear features. Photogrammetric Engineering and Remote Sensing, vol. 71(6), 2005, pp. 699–707. https://doi.org/10.14358/PERS.71.6.699.
- Deng F., Hu Minjie, Guan H.: Automatic registration between LiDAR and digital images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII-B1, 2008, pp. 487–490.
- Choi K., Hong J., Lee I.: Precise geometric registration of aerial imagery and LiDAR data. ETRI Journal, vol. 33(4), 2011, pp. 506–516. https://doi.org/10.4218/etrij.11.1610.0046.
- Wang X., Xu B., Zhao S., Li X.: Automatic registration of optical image and airborne LiDAR data based on centers and corner points of building boundaries. International Journal of Remote Sensing, vol. 43(18), 2022, pp. 6644–6668. https://doi.org/10.1080/01431161.2022.2142487.
- Zhu B., Ye Y., Zhou L., Li Z., Yin G.: Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 181, 2021, pp. 129–147. https://doi.org/10.1016/j.isprsjprs.2021.09.010.
- Peng S., Ma H., Zhang L.: Automatic registration of optical images with airborne LiDAR point cloud in urban scenes based on line-point similarity invariant and extended collinearity equations. Sensors, vol. 19(5), 2019. https://doi.org/10.3390/s19051086.
- Mandlburger G., Wenzel K., Spitzer A., Haala N., Glira P., Pfeifer N.: Improved topographic models via concurrent airborne LiDAR and dense image matching. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W4, 2017, pp. 259–266. https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017.
- Zahs V., Intertwining L., Anders K., Bremer M., Rutzinger M., Potučková M., Höfle B.: Evaluation of UAV-borne photogrammetry and laser scanning for 3D topographic change analysis at an active rock glacier. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B2-2022, 2022, pp. 1109–1116. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022.
- Yang B., Chen C.: Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 101, 2015, pp. 262–274. https://doi.org/10.1016/j.isprsjprs.2014.12.025.
- Kim H., Correa C.D., Max N.: Automatic registration of LiDAR and optical imagery using depth map stereo, [in:] 2014 IEEE International Conference on Computational Photography (ICCP), IEEE, 2014, pp. 1–8. https://doi.org/10.1109/ICCPHOT.2014.6831821.
- Lv F., Ren K.: Automatic registration of airborne LiDAR point cloud data and optical imagery depth map based on line and points features. Infrared Physics & Technology, vol. 71, 2015, pp. 457–463. https://doi.org/10.1016/j.infrared.2015.06.006.
- Toschi I., Farella E.M., Welponer M., Remondino F.: Quality-based registration refinement of airborne LiDAR and photogrammetric point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, 2021, pp. 160–170. https://doi.org/10.1016/j.isprsjprs.2020.12.005.
- Li J., Yang B., Chen C., Habib A.: NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 158, 2019, pp. 123–145. https://doi.org/10.1016/j.isprsjprs.2019.10.009.
- Cledat E., Skaloud J.: Fusion of photo with airborne laser scanning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-1-2020, 2020, pp. 173–180. https://doi.org/10.5194/isprs-annals-V-1-2020-173-2020.
- Glira P., Pfeifer N., Mandlburger G.: Hybrid orientation of airborne LiDAR point clouds and aerial images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W5, 2019, pp. 567–574. https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019.
- Haala N., Kölle M., Cramer M., Laupheimer D., Mandlburger G., Glira P.: Hybrid georeferencing, enhancement and classification of ultra-high resolution UAV LiDAR and image point clouds for monitoring applications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-2-2020, 2020, pp. 727–734. https://doi.org/10.5194/isprs-annals-V-2-2020-727-2020.
- Haala N., Kölle M., Cramer M., Laupheimer D., Zimmermann F.: Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy. ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 4, 2022, 100014. https://doi.org/10.1016/j.ophoto.2022.100014.
- Pöppl F., Neuner H., Mandlburger G., Pfeifer N.: Integrated trajectory estimation for 3D kinematic mapping with GNSS, INS and imaging sensors: A framework and review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, 2023, pp. 287–305. https://doi.org/10.1016/j.isprsjprs.2022.12.022.
- Teo T.A., Shih T.Y., Lin Y.T., Huang C.M.: The generation of inferred stereo images from LiDAR data, [in:] 31st Asian Conference on Remote Sensing 2010 (ACRS 2010). Vol. 1, Asian Association on Remote Sensing (AARS), 2010, pp. 459–464.
- Rzonca A., Majek K.: Lidarometry as a variant of integration of photogrammetric and laser scanning data. Measurement Automation and Monitoring, vol. 62(8), 2016, pp. 268–273.
- Rodríguez-Cielos R., Galán-García J.L., Padilla-Domínguez Y., Rodríguez-Cielos P., Bello-Patricio A.B., López-Medina J.A.: LiDARgrammetry: A new method for generating synthetic stereoscopic products from digital elevation models. Applied Sciences, vol. 7(9), 2017, 906. https://doi.org/10.3390/app7090906.
- Rzonca A., Twardowski M.: The lidargrammetric model deformation method for altimetric UAV-ALS data enhancement. Remote Sensing, vol. 14(24), 2022. https://doi.org/10.3390/rs14246391.
- González-Aguilera D., Rodríguez-Gonzálvez P., Hernández-López D., Luis Lerma J.: A robust and hierarchical approach for the automatic co-registration of intensity and visible images. Optical Laser Technology, vol. 44(6), 2012, pp. 1915–1923. https://doi.org/10.1016/j.optlastec.2012.01.034.
- Jayendra-Lakshman M., Devarajan V.: A new feature descriptor for LiDAR image matching. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-2/W1, 2013, pp. 157–162. https://doi.org/10.5194/isprsannals-II-2-W1-157-2013.
- Fragkos P., Ioannidis C.: Assessment of lidargrammetry for spatial data extraction. SPIE Proceedings, vol. 9688 [Fourth International Conference on Remote Sensing and Geoinformation of the Environment], 2016, 96881L. https://doi.org/10.1117/12.2240653.
- Tian Z., Wei X.: Fully convolutional one-stage 3D object detection on LiDAR range images, [in:] 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Vol. 45, Advances in Neural Information Processing Systems, vol. 35, Neural Information Processing Systems Foundation, 2022, pp. 34899–34911.
- Xianjia Y., Salimpour S., Queralta J.P., Westerlund T.: Analyzing general-purpose deep-learning detection and segmentation models with images from a lidar as a camera sensor. arXiv [preprint], 8 March 2022. https://arxiv.org/abs/2203.04064.
- Pargieła K., Rzonca A., Twardowski M.: The utilization of synthetic and semisynthetic point clouds and images for testing novel approaches for correcting LiDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-1/W3-2023, 2023, pp. 23–24. https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-145-2023.
- Schönberger J.L.: COLMAP. https://colmap.github.io/ [access: 29.07.2025].
- 3DOM-FBK: Deep Image Matching. Open-source toolbox for multiview image matching. 3D Optical Metrology (3DOM) Unit, Fondazione Bruno Kessler. https://3dom-fbk.github.io/deep-image-matching/ [access: 29.07.2025].
- DeTone D., Malisiewicz T., Rabinovich A.: SuperPoint: Self-supervised interest point detection and description, [in:] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2018, pp. 337–349. https://doi.org/10.1109/CVPRW.2018.00060.
- Sarlin P.E., DeTone D., Malisiewicz T., Rabinovich A.: SuperGlue: Learning feature matching with graph neural networks, [in:] 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2020, pp. 4937–4946. https://doi.org/10.1109/CVPR42600.2020.00499.
- Lindenberger P., Sarlin P.-E., Pollefeys M.: LightGlue: Local feature matching at light speed, [in:] 2023 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2023, pp. 17581–17592. https://doi.org/10.1109/ICCV51070.2023.01616.
- Tyszkiewicz M.J., Fua P., Trulls E.: DISK: Learning local features with policy gradient, [in:] 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Vol. 18, Advances in Neural Information Processing Systems, vol. 33, Neural Information Processing Systems Foundation, 2020, pp. 14254–14265.
References
Baltsavias E.P.: Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54(2–3), 1999, pp. 199–214. https://doi.org/10.1016/S0924-2716(99)00015-5.
Toth C., Jóźków G.: Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, 2016, pp. 22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004.
Cheng L., Chen S., Liu X., Xu H., Wu Y., Li M., Chen Y.: Registration of laser scanning point clouds: A review. Sensors (Switzerland), vol. 18(5), 2018, 1641. https://doi.org/10.3390/s18051641.
Li X., Liu C., Wang Z., Xie X., Li D., Xu L.: Airborne LiDAR: State-of-the-art of system design, technology and application. Measurement Science and Technology, vol. 32(3), 2020, 032002. https://doi.org/10.1088/1361-6501/abc867.
Bakuła K., Salach A., Zelaya Wziątek D., Ostrowski W., Górski K., Kurczyński Z.: Evaluation of the accuracy of LiDAR data acquired using a UAS for levee monitoring: Preliminary results. International Journal of Remote Sensing, vol. 38(8–10), 2017, pp. 2921–2937. https://doi.org/10.1080/01431161.2016.1277044.
Rivera G., Porras R., Florencia R., Sánchez-Solís J.P.: LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Computers and Electronics in Agriculture, vol. 207, 2023, 107737. https://doi.org/10.1016/j.compag.2023.107737.
Dainelli R., Toscano P., Di Gennaro S.F., Matese A.: Recent advances in unmanned aerial vehicles forest remote sensing – a systematic review. Part II: Research applications. Forests, vol. 12(4), 2021, 397. https://doi.org/10.3390/f12040397.
Guimarães N., Pádua L., Marques P., Silva N., Peres E., Sousa J.J.: Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sensing, vol. 12(6), 2020, 1046. https://doi.org/10.3390/rs12061046.
Barclay N., Smith M.: Assessment of advanced LiDAR based tools for enhanced flood prediction, [in:] SoutheastCon 2021, IEEE, 2021, pp. 1–5. https://doi.org/10.1109/SoutheastCon45413.2021.9401895.
Dreier A., Kuhlmann H., Klingbeil L.: The potential of UAV-based laser scanning for deformation monitoring – case study on a water dam, [in:] 5th Joint International Symposium on Deformation Monitoring (JISDM), 20–22 June 2022, Valencia, Spain, Editorial Universitat Politècnica de València, 2023, pp. 261–269. https://doi.org/10.4995/jisdm2022.2022.13833.
Rashdi R., Martínez-Sánchez J., Arias P., Qiu Z.: Scanning technologies to building information modelling: A review. Infrastructures, vol. 7(4), 2022, 49. https://doi.org/10.3390/infrastructures7040049.
Lenda G., Borowiec N., Marmol U.: Study of the precise determination of pipeline geometries using UAV scanning compared to terrestrial scanning, aerial scanning and UAV photogrammetry. Sensors, vol. 23(19), 2023, 8257. https://doi.org/10.3390/s23198257.
Azevedo F., Dias A., Almeida J., Oliveira A., Ferreira A., Santos T., Martins A., Silva E.: LiDAR-based real-time detection and modeling of power lines for unmanned aerial vehicles. Sensors (Switzerland), vol. 19(8), 2019, 1812. https://doi.org/10.3390/s19081812.
McCoy M.D., Casana J., Hill A.C., Laugier E.J., Mulrooney M.A., Ladefoged T.N.: Unpiloted aerial vehicle acquired lidar for mapping monumental architecture. Advances in Archaeological Practice, vol. 9(2), 2021, pp. 160–174. https://doi.org/10.1017/aap.2021.5.
Masini N., Abate N., Gizzi F.T., Vitale V., Minervino Amodio A., Sileo M., Biscione M., Lasaponara R., Bentivenga M., Cavalcante F.: UAV LiDAR based approach for the detection and interpretation of archaeological micro topography under canopy – the rediscovery of Perticara (Basilicata, Italy). Remote Sensing, vol. 14(23), 2022, 6074. https://doi.org/10.3390/rs14236074.
May N.C., Toth C.K.: Point positioning accuracy of airborne LIDAR systems: A rigorous analysis. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-3/W49B, 2007, pp. 107–111.
Glennie C.: Rigorous 3D error analysis of kinematic scanning LIDAR systems. Journal of Applied Geodesy, vol. 1(3), 2008, pp. 147–157. https://doi.org/10.1515/jag.2007.017.
Schaer P., Skaloud J., Landtwing S., Legat K.: Accuracy estimation for laser point cloud including scanning geometry. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-5/C55, 2007, pp. 1–8.
Bang K.I., Habib A., Kersting A.: Estimation of biases in lidar system calibration parameters using overlapping strips. Canadian Journal of Remote Sensing, vol. 36(2), 2010, pp. S335–S354. https://doi.org/10.5589/m10-054.
Li Z., Tan J., Liu H.: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment. Remote Sensing, vol. 11(4), 2019, 442. https://doi.org/10.3390/rs11040442.
Lv J., Xu J., Hu K., Liu Y., Zuo X.: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation, [in:] IEEE International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 9968–9975. https://doi.org/10.1109/IROS45743.2020.9341405.
Lv J., Zuo X., Hu K., Xu J., Huang G., Liu Y.: Observability-aware intrinsic and extrinsic calibration of LiDAR-IMU systems. IEEE Transactions on Robotics, vol. 38(6), 2022, pp. 3734–3753. https://doi.org/10.1109/TRO.2022.3174476.
Glira P., Pfeifer N., Mandlburger G.: Rigorous strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogrammetric Engineering & Remote Sensing, vol. 82(12), 2016, pp. 945–954. https://doi.org/10.14358/PERS.82.12.945.
Yuan W., Choi D., Bolkas D.: GNSS-IMU-assisted colored ICP for UAV-LiDAR point cloud registration of peach trees. Computers and Electronics in Agriculture, vol. 197, 2022, 106966. https://doi.org/10.1016/j.compag.2022.106966.
Favalli M., Fornaciai A., Pareschi M.T.: LIDAR strip adjustment: Application to volcanic areas. Geomorphology, vol. 111(3–4), 2009, pp. 123–135. https://doi.org/10.1016/j.geomorph.2009.04.010.
Gressin A., Mallet C., Demantké J., David N.: Towards 3D LIDAR point cloud registration improvement using optimal neighborhood knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 79, 2013, pp. 240–251. https://doi.org/10.1016/j.isprsjprs.2013.02.019.
Tam G.K.L., Cheng Z.Q., Lai Y.K., Langbein F.C., Liu Y., Marshall D., Martin R.R., Sun X.F., Rosin P.L.: Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, vol. 19(7), 2013, pp. 1199–1217. https://doi.org/10.1109/TVCG.2012.310.
Glira P., Pfeifer N., Briese C., Ressl C.: Rigorous strip adjustment of airborne laserscanning data based on the ICP algorithm. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3/W5, 2015, pp. 73–80. https://doi.org/10.5194/isprsannals-II-3-W5-73-2015.
Brun A., Cucci D.A., Skaloud J.: Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 189, 2022, pp. 185–200. https://doi.org/10.1016/j.isprsjprs.2022.04.027.
Kuçak R.A., Erol S., Erol B.: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm. Arabian Journal of Geosciences, vol. 15(11), 2022, 1017. https://doi.org/10.1007/s12517-022-10303-2.
Csanyi N., Toth C.K., Grejner-Brzezinska D., Ray J.: Improvement of LiDAR data accuracy using LiDAR specific ground targets, [in:] American Society for Photogrammetry and Remote Sensing – Annual Conference 2005 – Geospatial Goes Global: From Your Neighborhood to Whole Planet. Vol. 1, American Society for Photogrammetry and Remote Sensing (ASPRS), 2005, pp. 152–162.
Chen Z., Li J., Yang B.: A strip adjustment method of UAV-borne LiDAR point cloud based on DEM features for mountainous area. Sensors, vol. 21(8), 2021, pp. 1–20. https://doi.org/10.3390/s21082782.
Villena-Martinez V., Oprea S., Saval-Calvo M., Azorin-Lopez J., FusterGuillo A., Fisher R.B.: When deep learning meets data alignment: A review on deep registration networks (DRNs). Applied Sciences, vol. 10(21), 2020, 7524. https://doi.org/10.3390/app10217524.
Guo Y., Wang H., Hu Q., Liu H., Liu L., Bennamoun M.: Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43(12), 2021, pp. 4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434.
Gupta A., Fernando X.: Simultaneous localization and mapping (SLAM) and data fusion in unmanned aerial vehicles: Recent advances and challenges. Drones, vol. 6(4), 2022, 85. https://doi.org/10.3390/drones6040085.
Ressl C., Kager H., Mandlburger G.: Quality checking of ALS projects using statistics of strip differences. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII-B3b, 2008, pp. 253–260.
Habib A., Kersting A.P., Bang K.I., Lee D.C.: Alternative methodologies for the internal quality control of parallel LiDAR strips. IEEE Transactions on Geoscience and Remote Sensing, vol. 48(1), 2010, pp. 221–236. https://doi.org/10.1109/TGRS.2009.2026424.
Ressl C., Mandlburger G., Pfeifer N.: Investigating adjustment of airborne laser scanning strips without usage of GNSS/IMU trajectory data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-3/W8, 2009, pp. 195–200.
Tulldahl H.M., Bissmarck F., Larsson H., Grönwall C., Tolt G.: Accuracy evaluation of 3D lidar data from small UAV. SPIE Proceedings, vol. 9649 [ElectroOptical Remote Sensing, Photonic Technologies, and Applications IX], 2015, 964903. https://doi.org/10.1117/12.2194508.
Stöcker C., Nex F., Koeva M., Gerke M.: Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6, 2017, pp. 355–361. https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017.
Dreier A., Janßen J., Kuhlmann H., Klingbeil L.: Quality analysis of direct georeferencing in aspects of absolute accuracy and precision for a UAV-based laser scanning system. Remote Sensing, vol. 13(18), 2021, 3564. https://doi.org/10.3390/rs13183564.
Mayr A., Bremer M., Rutzinger M.: 3D point errors and change detection accuracy of unmanned aerial vehicle laser scanning data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-2-2020, 2020, pp. 765–772. https://doi.org/10.5194/isprs-annals-V-2-2020-765-2020.
Fuad N.A., Ismail Z., Majid Z., Darwin N., Ariff M.F.M., Idris K.M., Yusoff A.R.: Accuracy evaluation of digital terrain model based on different flying altitudes and conditions of terrain using UAV LiDAR technology. IOP Conference Series: Earth and Environmental Science, vol. 169, 2018, 012100. https://doi.org/10.1088/1755-1315/169/1/012100.
Kucharczyk M., Hugenholtz C.H., Zou X.: UAV–LiDAR accuracy in vegetated terrain. Journal of Unmanned Vehicle Systems, vol. 6(4), 2018, pp. 212–234. https://doi.org/10.1139/juvs-2017-0030.
Soininen A.: TerraMatch User Guide. 64-bit version. Terrasolid Ltd, Helsinki 2024. https://terrasolid.com/guides/tmatch.pdf [access: 29.06.2025].
RIEGL Laser Measurement Systems GmbH: RiProcess Datasheet RiProcess Datasheet, 2022-09-01. https://www.laser-3d.pl/wp-content/uploads/RiProcess_Datasheet_2021-05-17.pdf [access: 29.07.2025].
Lohani B., Ghosh S.: Airborne LiDAR technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A – Physical Sciences, vol. 87, 2017, pp. 567–579. https://doi.org/10.1007/s40010-017-0435-9.
López Serrano F.R., Rubio E., García Morote F.A., Andrés Abellán M., Picazo Córdoba M.I., García Saucedo F., Martínez García E., Sánchez García J.M., Serena Innerarity J., Carrasco Lucas L., García González O., García González J.C.: Artificial intelligence-based software (AID-FOREST) for tree detection: A new framework for fast and accurate forest inventorying using LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, vol. 113, 2022, 103014. https://doi.org/10.1016/j.jag.2022.103014.
Kumar Mishra R.: A review of optical imagery and airborne LiDAR data registration methods. Open Remote Sensing Journal, vol. 5, 2012, pp. 54–63. https://doi.org/10.2174/1875413901205010054.
Rzonca A.: Review of methods of combined orientation of photogrammetric and laser scanning data. Measurement, Automation & Monitoring, vol. 64(3), 2018, pp. 57–62.
Mouzakidou K., Brun A., Cucci D.A., Skaloud J.: Airborne sensor fusion: Expected accuracy and behavior of a concurrent adjustment. ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 12, 2024, 100057. https://doi.org/10.1016/j.ophoto.2023.100057.
Kovanič Ľ., Topitzer B., Peťovský P., Blišťan P., Gergeľová M.B., Blišťanová M.: Review of photogrammetric and LiDAR applications of UAV. Applied Sciences, vol. 13(11), 2023. https://doi.org/10.3390/app13116732.
Chen S., Ma H., Zhang Y., Zhong L., Xu J., Chen H.: Boresight calibration of airborne LiDAR system without ground control points. IEEE Geoscience and Remote Sensing Letters, vol. 9(1), 2012, pp. 85–89. https://doi.org/10.1109/LGRS.2011.2161070.
Pentek Q., Kennel P., Allouis T., Fiorio C., Strauss O.: A flexible targetless LiDAR–GNSS/INS–camera calibration method for UAV platforms. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, 2020, pp. 294–307. https://doi.org/10.1016/j.isprsjprs.2020.05.014.
Toschi I., Remondino F., Rothe R., Klimek K.: Combining airborne oblique camera and LiDAR sensors: Investigation and new perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-1, 2018, pp. 437–444. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018.
Kalantar B., Ueda N., Al-Najjar H.A.H., Moayedi H., Halin A.A., Mansor S.: UAV and LiDAR image registration: A SURF-based approach for ground control points selection. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W13, 2019, pp. 413–418. https://doi.org/10.5194/isprs-archives-XLII-2-W13-413-2019.
Habib A., Ghanma M., Morgan M., Al-Ruzouq R.: Photogrammetric and LiDAR data registration using linear features. Photogrammetric Engineering and Remote Sensing, vol. 71(6), 2005, pp. 699–707. https://doi.org/10.14358/PERS.71.6.699.
Deng F., Hu Minjie, Guan H.: Automatic registration between LiDAR and digital images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII-B1, 2008, pp. 487–490.
Choi K., Hong J., Lee I.: Precise geometric registration of aerial imagery and LiDAR data. ETRI Journal, vol. 33(4), 2011, pp. 506–516. https://doi.org/10.4218/etrij.11.1610.0046.
Wang X., Xu B., Zhao S., Li X.: Automatic registration of optical image and airborne LiDAR data based on centers and corner points of building boundaries. International Journal of Remote Sensing, vol. 43(18), 2022, pp. 6644–6668. https://doi.org/10.1080/01431161.2022.2142487.
Zhu B., Ye Y., Zhou L., Li Z., Yin G.: Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 181, 2021, pp. 129–147. https://doi.org/10.1016/j.isprsjprs.2021.09.010.
Peng S., Ma H., Zhang L.: Automatic registration of optical images with airborne LiDAR point cloud in urban scenes based on line-point similarity invariant and extended collinearity equations. Sensors, vol. 19(5), 2019. https://doi.org/10.3390/s19051086.
Mandlburger G., Wenzel K., Spitzer A., Haala N., Glira P., Pfeifer N.: Improved topographic models via concurrent airborne LiDAR and dense image matching. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W4, 2017, pp. 259–266. https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017.
Zahs V., Intertwining L., Anders K., Bremer M., Rutzinger M., Potučková M., Höfle B.: Evaluation of UAV-borne photogrammetry and laser scanning for 3D topographic change analysis at an active rock glacier. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B2-2022, 2022, pp. 1109–1116. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022.
Yang B., Chen C.: Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 101, 2015, pp. 262–274. https://doi.org/10.1016/j.isprsjprs.2014.12.025.
Kim H., Correa C.D., Max N.: Automatic registration of LiDAR and optical imagery using depth map stereo, [in:] 2014 IEEE International Conference on Computational Photography (ICCP), IEEE, 2014, pp. 1–8. https://doi.org/10.1109/ICCPHOT.2014.6831821.
Lv F., Ren K.: Automatic registration of airborne LiDAR point cloud data and optical imagery depth map based on line and points features. Infrared Physics & Technology, vol. 71, 2015, pp. 457–463. https://doi.org/10.1016/j.infrared.2015.06.006.
Toschi I., Farella E.M., Welponer M., Remondino F.: Quality-based registration refinement of airborne LiDAR and photogrammetric point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, 2021, pp. 160–170. https://doi.org/10.1016/j.isprsjprs.2020.12.005.
Li J., Yang B., Chen C., Habib A.: NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 158, 2019, pp. 123–145. https://doi.org/10.1016/j.isprsjprs.2019.10.009.
Cledat E., Skaloud J.: Fusion of photo with airborne laser scanning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-1-2020, 2020, pp. 173–180. https://doi.org/10.5194/isprs-annals-V-1-2020-173-2020.
Glira P., Pfeifer N., Mandlburger G.: Hybrid orientation of airborne LiDAR point clouds and aerial images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W5, 2019, pp. 567–574. https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019.
Haala N., Kölle M., Cramer M., Laupheimer D., Mandlburger G., Glira P.: Hybrid georeferencing, enhancement and classification of ultra-high resolution UAV LiDAR and image point clouds for monitoring applications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-2-2020, 2020, pp. 727–734. https://doi.org/10.5194/isprs-annals-V-2-2020-727-2020.
Haala N., Kölle M., Cramer M., Laupheimer D., Zimmermann F.: Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy. ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 4, 2022, 100014. https://doi.org/10.1016/j.ophoto.2022.100014.
Pöppl F., Neuner H., Mandlburger G., Pfeifer N.: Integrated trajectory estimation for 3D kinematic mapping with GNSS, INS and imaging sensors: A framework and review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, 2023, pp. 287–305. https://doi.org/10.1016/j.isprsjprs.2022.12.022.
Teo T.A., Shih T.Y., Lin Y.T., Huang C.M.: The generation of inferred stereo images from LiDAR data, [in:] 31st Asian Conference on Remote Sensing 2010 (ACRS 2010). Vol. 1, Asian Association on Remote Sensing (AARS), 2010, pp. 459–464.
Rzonca A., Majek K.: Lidarometry as a variant of integration of photogrammetric and laser scanning data. Measurement Automation and Monitoring, vol. 62(8), 2016, pp. 268–273.
Rodríguez-Cielos R., Galán-García J.L., Padilla-Domínguez Y., Rodríguez-Cielos P., Bello-Patricio A.B., López-Medina J.A.: LiDARgrammetry: A new method for generating synthetic stereoscopic products from digital elevation models. Applied Sciences, vol. 7(9), 2017, 906. https://doi.org/10.3390/app7090906.
Rzonca A., Twardowski M.: The lidargrammetric model deformation method for altimetric UAV-ALS data enhancement. Remote Sensing, vol. 14(24), 2022. https://doi.org/10.3390/rs14246391.
González-Aguilera D., Rodríguez-Gonzálvez P., Hernández-López D., Luis Lerma J.: A robust and hierarchical approach for the automatic co-registration of intensity and visible images. Optical Laser Technology, vol. 44(6), 2012, pp. 1915–1923. https://doi.org/10.1016/j.optlastec.2012.01.034.
Jayendra-Lakshman M., Devarajan V.: A new feature descriptor for LiDAR image matching. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-2/W1, 2013, pp. 157–162. https://doi.org/10.5194/isprsannals-II-2-W1-157-2013.
Fragkos P., Ioannidis C.: Assessment of lidargrammetry for spatial data extraction. SPIE Proceedings, vol. 9688 [Fourth International Conference on Remote Sensing and Geoinformation of the Environment], 2016, 96881L. https://doi.org/10.1117/12.2240653.
Tian Z., Wei X.: Fully convolutional one-stage 3D object detection on LiDAR range images, [in:] 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Vol. 45, Advances in Neural Information Processing Systems, vol. 35, Neural Information Processing Systems Foundation, 2022, pp. 34899–34911.
Xianjia Y., Salimpour S., Queralta J.P., Westerlund T.: Analyzing general-purpose deep-learning detection and segmentation models with images from a lidar as a camera sensor. arXiv [preprint], 8 March 2022. https://arxiv.org/abs/2203.04064.
Pargieła K., Rzonca A., Twardowski M.: The utilization of synthetic and semisynthetic point clouds and images for testing novel approaches for correcting LiDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-1/W3-2023, 2023, pp. 23–24. https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-145-2023.
Schönberger J.L.: COLMAP. https://colmap.github.io/ [access: 29.07.2025].
3DOM-FBK: Deep Image Matching. Open-source toolbox for multiview image matching. 3D Optical Metrology (3DOM) Unit, Fondazione Bruno Kessler. https://3dom-fbk.github.io/deep-image-matching/ [access: 29.07.2025].
DeTone D., Malisiewicz T., Rabinovich A.: SuperPoint: Self-supervised interest point detection and description, [in:] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2018, pp. 337–349. https://doi.org/10.1109/CVPRW.2018.00060.
Sarlin P.E., DeTone D., Malisiewicz T., Rabinovich A.: SuperGlue: Learning feature matching with graph neural networks, [in:] 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2020, pp. 4937–4946. https://doi.org/10.1109/CVPR42600.2020.00499.
Lindenberger P., Sarlin P.-E., Pollefeys M.: LightGlue: Local feature matching at light speed, [in:] 2023 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2023, pp. 17581–17592. https://doi.org/10.1109/ICCV51070.2023.01616.
Tyszkiewicz M.J., Fua P., Trulls E.: DISK: Learning local features with policy gradient, [in:] 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Vol. 18, Advances in Neural Information Processing Systems, vol. 33, Neural Information Processing Systems Foundation, 2020, pp. 14254–14265.