Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Real-Time Building-Damage-Extraction Technology from Ground-Based Video Footage Using Normalized Difference Red/Green Redness Index
Corresponding Author(s) : Haruhiro Shiraishi
Geomatics and Environmental Engineering,
Vol. 19 No. 1 (2025): Geomatics and Environmental Engineering
Abstract
When an earthquake occurs, promptly identifying the presence or absence of damage is crucial. This study developed a real-time building-damageextraction technique using ground-based imagery and evaluated its effectiveness. The technique applies the redness index (RI) (which was previously used in remote-sensing corrections for vegetation in arid regions) to identify “building damage” in those cases where buildings are partially or completely destroyed by earthquakes or tsunamis.
To capture near-field and distant perspectives in the images, each image was divided into four quadrants (upper-left, upper-right, lower-left, and lowerright). The lower-left and lower-right quadrants were analyzed to assess the conditions on either side of a road in the near field using image recognition. Since the images contain latitudinal and longitudinal information, mapping the damage along the road can be automated by recording the route. Finally, a comparative analysis with other indices was conducted in order to evaluate RI’s superiority in damage mapping. The EMS-98 damage scale was used for damage assessment, classifying D5 (RI ≥ 0.08) as “building-collapse damage” and D0–D4 as “no building-collapse damage.” The average damage values for D5-classified buildings were significantly higher than others, thus demonstrating that RI provides practical and reliable results. Additionally, the study discussed comparisons with other indices and real-time evaluation methods. The authors sincerely hope this research contributes to life-saving efforts and deliveries of relief supplies in the aftermaths of earthquakes, ultimately saving many lives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Hiroo K.: Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, vol. 6(5), 1972, pp. 346–359. https://doi.org/10.1016/0031-9201(72)90058-1.
- Okamoto T., Takenaka H., Nakamura T., Hara T.: FDM simulation of earthquakes off western Kyushu, Japan, using a land-ocean unified 3D structure model. Earth, Planets and Space, vol. 69, 2017, 88. https://doi.org/10.1186/s40623-017-0672-9.
- Chen J., Liu H., Zheng J., Lv M., Yan B., Hu X., Gao Y.: Damage degree evaluation of earthquake area using UAV aerial image. International Journal of Aerospace Engineering, vol. 2016(1), 2016, 2052603. https://doi.org/10.1155/2016/2052603.
- Voigt S., Kemper T., Riedlinger T., Kiefl R., Scholte K., Mehl H.: Satellite image analysis for disaster and crisis-management support. IEEE Transactions on Geoscience and Remote Sensing, vol. 45(6), 2007, pp. 1520–1528. https://doi.org/10.1109/TGRS.2007.895830.
- Chandola V., Banerjee A., Kumar V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR), vol. 41(3), 2009, 15. https://doi.org/10.1145/1541880.1541882.
- Mizui Y., Fujiwara H.: Estimate the amount of disaster waste disposal work using in-vehicle camera images – a case study in Hitoyoshi City, Kumamoto Prefecture. Journal of Disaster Research, vol. 16(7), 2021, pp. 1061–1073. https://doi.org/10.20965/jdr.2021.p1061.
- 2024 Noto earthquake bosaiXview. https://xview.bosai.go.jp/view/index.html?appid=41a77b3dcf3846029206b86107877780 [access: 16.01.2025].
- Li X., Cheng X., Chen W., Chen G., Liu S.: Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms. Remote Sensing, vol. 7(8), 2015, pp. 9705–9726. https://doi.org/10.3390/rs70809705.
- Anwar S.M., Majid M., Qayyum A., Awais M., Alnowami M., Khan M.K.: Medical image analysis using convolutional neural networks: a review. Journal of Medical Systems, vol. 42, 2018, 226. https://doi.org/10.1007/s10916-018-1088-1.
- Koskosidis Y.A., Powell W.B., Solomon M.M.: An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints. Transportation Science, vol. 26(2), 1992, pp. 69–85. https://doi.org/10.1287/trsc.26.2.69.
- Taniguchi E., Yamada T., Kakimoto Y.: Probabilistic vehicle routing and scheduling with variable travel times. IFAC Proceedings, vol. 33(9), 2000, pp. 33–38. https://doi.org/10.1016/S1474-6670(17)38119-3.
- Gitelson A.A., Stark R., Grits U., Rundquist D., Kaufman Y., Derry D.: Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, vol. 23(13), pp. 2537–2562. https://doi.org/10.1080/01431160110107806.
- Shiraishi H.: New index for estimation of chlorophyll-a concentration in water with RGB value. International Journal of Engineering & Technology, vol. 18(6), 2018, pp. 10–16.
- Cobelo I., Machado K.B., David A.C.M., Carvalho P., Ferreira M.E., Nabout J.C.: Unmanned aerial vehicles and low-cost sensor as tools for monitoring freshwater chlorophyll-a in mesocosms with different trophic state. International Journal of Environmental Science and Technology, vol. 20(6), 2023, pp. 5925–5936. https://doi.org/10.1007/s13762-022-04386-3.
- Bannari A., Morin D., Bonn F., Huete A.: A review of vegetation indices. Remote Sensing Reviews, vol. 13(1–2), pp. 95–120. https://doi.org/10.1080/02757259509532298.
- Escadafal R., Belghit A., Ben-Moussa A.: Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride, [in:] Guyot G. (éd.), Mesures physiques et signatures en télédétection: Sixième symposium international; actes; 17–21 Janvier 1994, Val d’Isère, France: Proceedings, CNES, Centre National d’Etudes Spatiales, Paris 1994, pp. 253–259.
- Escadafal R., Huete A.: Étude des propriétés spectrales des sols arides appliquée à l’amélioration des indices de végétation obtenus par télédétection [Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil “noise”]. Comptes Rendus de l’Academie des Sciences. Serie 2, vol. 312(11), 1991, pp. 1385–1391.
- SEOS: Classification Algorithms and Methods. https://seos-project.eu/classification/classification-c01-p05.html [access: 16.01.2025].
- Tomowski D., Ehlers M., Klonus S.: Colour and texture based change detection for urban disaster analysis, [in:] 2011 Joint Urban Remote Sensing Event, Munich, Germany, 2011, IEEE, Piscataway 2011, pp. 329–332. https://doi.org/10.1109/JURSE.2011.5764786.
- Yamazaki F., Matsuoka M.: Remote sensing technologies in post-disaster damage assessment. Journal of Earthquake and Tsunami, vol. 1(3), 2007, pp. 193–210. https://doi.org/10.1142/S1793431107000122.
- Ma Y., Chen F., Liu J., He Y., Duan J., Li X.: An automatic procedure for early disaster change mapping based on optical remote sensing. Remote Sensing, vol. 8(4), 2016, 272. https://doi.org/10.3390/rs8040272.
- Ren Y., Liu Y.: Geological disaster detection from remote sensing image based on experts’ knowledge and image features, [in:] 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016, IEEE, Piscataway 2016, pp. 677–680. https://doi.org/10.1109/IGARSS.2016.7729170.
- Ye S., Nourzad S.H.H., Pradhan A., Bartoli I., Kontsos A.: Automated detection of damaged areas after hurricane sandy using aerial color images, [in:] Issa R.R., Flood I. (eds.), Computing in Civil and Building Engineering: Proceedings of the
- International Conference on Computing in Civil and Building Engineering: June 23–25, 2014, Orlando, Florida, American Society of Civil Engineers, Reston 2014, pp. 1796–1803. https://doi.org/10.1061/9780784413616.223.
- Amit S.N.K.B., Aoki Y.: Disaster detection from aerial imagery with convolutional neural network, [in:] 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 2017, IEEE, Piscataway 2017, pp. 239–245. https://doi.org/10.1109/KCIC.2017.8228593.
- Cabinet Office Japan, Disaster Management in Japan. https://www.bousai.go.jp [access: 16.01.2025].
- Okada S., Takai N.: Jishin higai chōsa no tame no tatemono bunrui to higai patān [Classifications of structural types and damage patterns of buildings for earthquake field investigation]. Journal of Structural and Construction Engineering, vol. 64(524), 1999, pp. 65–72. https://doi.org/10.3130/aijs.64.65_5.
- Naito S., Takahashi I.: Reiwa 6 nen noto hanto Jishin ni okeru tatemono higai no shikkai chosa oyobi koku shashin handoku tono hikaku [Comprehensive survey of building damage in the 2024 Noto Peninsula earthquake and comparison with aerial photograph interpretation], [in:] Conference Proceedings of the Architectural Institute of Japan (Kanto), 2024 August, art. no. 21121, pp. 241–242. https://www.aij.or.jp/paper/detail.html?productId=699519.
- Chen B., Li S., Wang K., Su Y., Chen J., Jin X., Lv Y., Diao W.: Estimating severity level of cotton disease based on spcctral indicse [!] of TM image. Journal of Infrared and Millimeter Waves, vol. 30(5), 2011, pp. 451–456.
References
Hiroo K.: Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, vol. 6(5), 1972, pp. 346–359. https://doi.org/10.1016/0031-9201(72)90058-1.
Okamoto T., Takenaka H., Nakamura T., Hara T.: FDM simulation of earthquakes off western Kyushu, Japan, using a land-ocean unified 3D structure model. Earth, Planets and Space, vol. 69, 2017, 88. https://doi.org/10.1186/s40623-017-0672-9.
Chen J., Liu H., Zheng J., Lv M., Yan B., Hu X., Gao Y.: Damage degree evaluation of earthquake area using UAV aerial image. International Journal of Aerospace Engineering, vol. 2016(1), 2016, 2052603. https://doi.org/10.1155/2016/2052603.
Voigt S., Kemper T., Riedlinger T., Kiefl R., Scholte K., Mehl H.: Satellite image analysis for disaster and crisis-management support. IEEE Transactions on Geoscience and Remote Sensing, vol. 45(6), 2007, pp. 1520–1528. https://doi.org/10.1109/TGRS.2007.895830.
Chandola V., Banerjee A., Kumar V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR), vol. 41(3), 2009, 15. https://doi.org/10.1145/1541880.1541882.
Mizui Y., Fujiwara H.: Estimate the amount of disaster waste disposal work using in-vehicle camera images – a case study in Hitoyoshi City, Kumamoto Prefecture. Journal of Disaster Research, vol. 16(7), 2021, pp. 1061–1073. https://doi.org/10.20965/jdr.2021.p1061.
2024 Noto earthquake bosaiXview. https://xview.bosai.go.jp/view/index.html?appid=41a77b3dcf3846029206b86107877780 [access: 16.01.2025].
Li X., Cheng X., Chen W., Chen G., Liu S.: Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms. Remote Sensing, vol. 7(8), 2015, pp. 9705–9726. https://doi.org/10.3390/rs70809705.
Anwar S.M., Majid M., Qayyum A., Awais M., Alnowami M., Khan M.K.: Medical image analysis using convolutional neural networks: a review. Journal of Medical Systems, vol. 42, 2018, 226. https://doi.org/10.1007/s10916-018-1088-1.
Koskosidis Y.A., Powell W.B., Solomon M.M.: An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints. Transportation Science, vol. 26(2), 1992, pp. 69–85. https://doi.org/10.1287/trsc.26.2.69.
Taniguchi E., Yamada T., Kakimoto Y.: Probabilistic vehicle routing and scheduling with variable travel times. IFAC Proceedings, vol. 33(9), 2000, pp. 33–38. https://doi.org/10.1016/S1474-6670(17)38119-3.
Gitelson A.A., Stark R., Grits U., Rundquist D., Kaufman Y., Derry D.: Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, vol. 23(13), pp. 2537–2562. https://doi.org/10.1080/01431160110107806.
Shiraishi H.: New index for estimation of chlorophyll-a concentration in water with RGB value. International Journal of Engineering & Technology, vol. 18(6), 2018, pp. 10–16.
Cobelo I., Machado K.B., David A.C.M., Carvalho P., Ferreira M.E., Nabout J.C.: Unmanned aerial vehicles and low-cost sensor as tools for monitoring freshwater chlorophyll-a in mesocosms with different trophic state. International Journal of Environmental Science and Technology, vol. 20(6), 2023, pp. 5925–5936. https://doi.org/10.1007/s13762-022-04386-3.
Bannari A., Morin D., Bonn F., Huete A.: A review of vegetation indices. Remote Sensing Reviews, vol. 13(1–2), pp. 95–120. https://doi.org/10.1080/02757259509532298.
Escadafal R., Belghit A., Ben-Moussa A.: Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride, [in:] Guyot G. (éd.), Mesures physiques et signatures en télédétection: Sixième symposium international; actes; 17–21 Janvier 1994, Val d’Isère, France: Proceedings, CNES, Centre National d’Etudes Spatiales, Paris 1994, pp. 253–259.
Escadafal R., Huete A.: Étude des propriétés spectrales des sols arides appliquée à l’amélioration des indices de végétation obtenus par télédétection [Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil “noise”]. Comptes Rendus de l’Academie des Sciences. Serie 2, vol. 312(11), 1991, pp. 1385–1391.
SEOS: Classification Algorithms and Methods. https://seos-project.eu/classification/classification-c01-p05.html [access: 16.01.2025].
Tomowski D., Ehlers M., Klonus S.: Colour and texture based change detection for urban disaster analysis, [in:] 2011 Joint Urban Remote Sensing Event, Munich, Germany, 2011, IEEE, Piscataway 2011, pp. 329–332. https://doi.org/10.1109/JURSE.2011.5764786.
Yamazaki F., Matsuoka M.: Remote sensing technologies in post-disaster damage assessment. Journal of Earthquake and Tsunami, vol. 1(3), 2007, pp. 193–210. https://doi.org/10.1142/S1793431107000122.
Ma Y., Chen F., Liu J., He Y., Duan J., Li X.: An automatic procedure for early disaster change mapping based on optical remote sensing. Remote Sensing, vol. 8(4), 2016, 272. https://doi.org/10.3390/rs8040272.
Ren Y., Liu Y.: Geological disaster detection from remote sensing image based on experts’ knowledge and image features, [in:] 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016, IEEE, Piscataway 2016, pp. 677–680. https://doi.org/10.1109/IGARSS.2016.7729170.
Ye S., Nourzad S.H.H., Pradhan A., Bartoli I., Kontsos A.: Automated detection of damaged areas after hurricane sandy using aerial color images, [in:] Issa R.R., Flood I. (eds.), Computing in Civil and Building Engineering: Proceedings of the
International Conference on Computing in Civil and Building Engineering: June 23–25, 2014, Orlando, Florida, American Society of Civil Engineers, Reston 2014, pp. 1796–1803. https://doi.org/10.1061/9780784413616.223.
Amit S.N.K.B., Aoki Y.: Disaster detection from aerial imagery with convolutional neural network, [in:] 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 2017, IEEE, Piscataway 2017, pp. 239–245. https://doi.org/10.1109/KCIC.2017.8228593.
Cabinet Office Japan, Disaster Management in Japan. https://www.bousai.go.jp [access: 16.01.2025].
Okada S., Takai N.: Jishin higai chōsa no tame no tatemono bunrui to higai patān [Classifications of structural types and damage patterns of buildings for earthquake field investigation]. Journal of Structural and Construction Engineering, vol. 64(524), 1999, pp. 65–72. https://doi.org/10.3130/aijs.64.65_5.
Naito S., Takahashi I.: Reiwa 6 nen noto hanto Jishin ni okeru tatemono higai no shikkai chosa oyobi koku shashin handoku tono hikaku [Comprehensive survey of building damage in the 2024 Noto Peninsula earthquake and comparison with aerial photograph interpretation], [in:] Conference Proceedings of the Architectural Institute of Japan (Kanto), 2024 August, art. no. 21121, pp. 241–242. https://www.aij.or.jp/paper/detail.html?productId=699519.
Chen B., Li S., Wang K., Su Y., Chen J., Jin X., Lv Y., Diao W.: Estimating severity level of cotton disease based on spcctral indicse [!] of TM image. Journal of Infrared and Millimeter Waves, vol. 30(5), 2011, pp. 451–456.