Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison of Statistical and Machine-Learning Model for Analyzing Landslide Susceptibility in Sumedang Area, Indonesia
Corresponding Author(s) : Hana Listi Fitriana
Geomatics and Environmental Engineering,
Vol. 18 No. 2 (2024): Geomatics and Environmental Engineering
Abstract
Landslides have produced several recurrent dangers, including losses of life and property, losses of agricultural land, erosion, population relocation, and others. Landslide mitigation is critical since population and economic expansion are rapidly followed by significant infrastructure development, increasing the risk of catastrophes. At an early stage in landslide-disaster mitigation, landslide-risk mapping must give critical information to help policies limit the potential for landslide damage. This study will utilize the comparative frequency ratio (FR) and random forest (RF) techniques; they will be utilized to properly investigate the distribution of flood vulnerability in the Sumedang area. This study has identified 12 criteria for developing a landslide-susceptibility model in the research region based on the features of past disasters in the research area. The FR and RF models scored 88 and 81% of the AUC value, respectively. Based on the McNemar test, the FR and RF models featured the same performance in determining the landslide-vulnerability level performances in Sumedang. They performed well in assessing landslides in the research region; therefore, they may be used as references in landslide prevention and references in future regional development plans by the stakeholders.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Fathani T.F., Legono D., Karnawati D.: A numerical model for the analysis of rapid landslide motion. Geotechnical and Geological Engineering, vol. 35(5), 2017, pp. 2253–2268. https://doi.org/10.1007/s10706-017-0241-9.
- Marelyn Telun D., Tham Fatt N., Mohd Farid A.K., Pereira J.J.: Landslide susceptibility modeling using a hybrid bivariate statistical and expert consultation approach in Canada Hill, Sarawak, Malaysia. Frontiers in Earth Science, vol. 9, 2021, pp. 1–15. https://doi.org/10.3389/feart.2021.616225.
- Salehpour Jam A., Mosaffaie J., Tabatabaei M.R.: Raster-based landslide susceptibility mapping using compensatory MADM methods. Environmental Modelling & Software, vol. 159, 2023, 105567. https://doi.org/10.1016/j.envsoft.2022.105567.
- Moazzam M.F.U., Vansarochana A., Boonyanuphap J., Choosumrong S., Rahman G., Djueyep G.P.: Spatio-statistical comparative approaches for landslide susceptibility modeling: Case of Mae Phun, Uttaradit Province, Thailand. SN Applied Sciences, vol. 2(3), 2020, 384. https://doi.org/10.1007/s42452-020-2106-8.
- Dou J., Yunus A.P., Bui D.T., Merghadi A., Sahana M., Zhu Z., Chen C.-W., Khosravi K., Yang Y., Pham B.T.: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of The Total Environment, vol. 662, 2019, pp. 332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221.
- Naryanto H.S.: Analisis Kejadian Bencana Tanah Longsor Banjarnegara, Provinsi Jawa Tengah the December 12, 2014 Landslide Disaster Analysis in Jemblung Area, Sampang Village, Karangkobar Subdistrict, Banjarnegara District, Central Java. Alami: Jurnal Teknologi Reduksi Risiko Bencana, vol. 1(1), 2017, pp. 1–10. https://doi.org/10.29122/alami.v1i1.122.
- Muriyatmoko D., Utama S.N., Pradhana F.R., Umami J., Rozaqi A.J., Setyaningrum H.: Landslide prediction model of prone areas in Pulung, Ponorogo East Java. Procedia Computer Science, vol. 161, 2019, pp. 747–755. https://doi.org/10.1016/j.procs.2019.11.179.
- Baral N., Karna A.K., Gautam S.: Landslide susceptibility assessment using modified frequency ratio model in Kaski District, Nepal. International Journal of Engineeringand Management Research, vol. 11(1), 2021, pp. 167–177. https://doi.org/10.31033/ijemr.11.1.23.
- Pradhan B., Mansor S., Pirasteh S., Buchroithner M.F.: Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing, vol. 32(14), 2011, pp. 4075–4087. https://doi.org/10.1080/01431161.2010.484433.
- Vineetha P., Sarun S., Sheela A.M.: Landslide susceptibility analysis using Frequency Ratio Model in a Tropical Region, South East Asia. Journal of Geography, Environment and Earth Science International, vol. 22(2), 2019, pp. 1–13. https://doi.org/10.9734/jgeesi/2019/v22i230140.
- Fathani T.F., Syah A., Faris F.: A numerical analysis of landslide movements considering the erosion and deposition along the flow path. Journal of the Civil Engineering Forum, vol. 5(3), 2019, 187. https://doi.org/10.22146/jcef.43808.
- Chen W., Peng J., Hong H., Shahabi H., Pradhan B., Liu J., Zhu A.-X., Pei X., Duan Z.: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of The Total Environment, vol. 626, 2018, pp. 1121–1135. https://doi.org/10.1016/j.scitotenv.2018.01.124.
- Nhu V.-H., Mohammadi A., Shahabi H., Ahmad B.B., Al-Ansari N., Shirzadi A., Clague J.J., Jaafari A., Chen W., Nguyen H.: Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. International Journal of Environmental Research and Public Health, vol. 17(14), 2020, 4933. https://doi.org/10.3390/ijerph17144933.
- Wang H., Zhang L., Yin K., Luo H., Li J.: Landslide identification using machine learning. Geoscience Frontiers, vol. 12(1), 2021, pp. 351–364. https://doi.org/10.1016/j.gsf.2020.02.012.
- Wang Y., Sun D., Wen H., Zhang H., Zhang F.: Comparison of random forest model and frequency ratio model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). International Journal of Environmental Research and Public Health, vol. 17(12), 2020, 4206. https://doi.org/10.3390/ijerph17124206.
- Zhou X., Wen H., Zhang Y., Xu J., Zhang W.: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers, vol. 12(5), 2021, 101211. https://doi.org/10.1016/j.gsf.2021.101211.
- Azarafza M., Azarafza M., Akgün H., Atkinson P.M., Derakhshani R.: Deep learning-based landslide susceptibility mapping. Scientific Reports, vol. 11(1), 2021, 24112. https://doi.org/10.1038/s41598-021-03585-1.
- Hong Y., Adler R., Huffman G.: Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, vol. 43(2), 2007, pp. 245–256. https://doi.org/10.1007/s11069-006-9104-z.
- Xing Y., Yue J., Guo Z., Chen Y., Hu J., Travé A.: Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang Mountains of China. Frontiers in Earth Science, vol. 9, 2021, pp. 1–15. https://doi.org/10.3389/feart.2021.722491.
- Shirzadi A., Soliamani K., Habibnejhad M., Kavian A., Chapi K., Shahabi H., Chen W., Khosravi K., Thai Pham B., Pradhan B., Ahmad A., Ahmad B.B., Bui D.T.: Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, vol. 18(11), 2018, 3777. https://doi.org/10.3390/s18113777.
- Akinci H., Kilicoglu C., Dogan S.: Random forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey. ISPRS International Journal of Geo-Information, vol. 9(9), 2020, 553. https://doi.org/10.3390/ijgi9090553.
- Abdo H.G.: Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria. International Journal of Environmental Science and Technology, vol. 19(4), 2022, pp. 2599–2618. https://doi.org/10.1007/s13762-021-03322-1.
- Sørensen R., Zinko U., Seibert J.: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, vol. 10(1), 2006, pp. 101–112. https://doi.org/10.5194/hess-10-101-2006.
- Efendi D., Hidayah E., Hasanuddin A.: Mapping of landslide susceptible zones by using frequency ratios at Bluncong subwatershed, Bondowoso Regency. U KaRsT, vol. 5(1), 2021, pp. 126–141. https://doi.org/10.30737/ukarst.v5i1.1455.
- Hong L., Ouyang M., Peeta S., He X., Yan Y.: Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliability Engineering & System Safety, vol. 137, 2015, pp. 58–68. https://doi.org/10.1016/j.ress.2014.12.013.
- Javier D.N., Kumar L.: Frequency ratio landslide susceptibility estimation in a tropical mountain region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3/W8, 2019, pp. 173–179. https://doi.org/10.5194/isprs-archives-XLII-3-W8-173-2019.
- Kose D.D., Turk T.: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Physical Geography, vol. 40(5), 2019, pp. 481–501. https://doi.org/10.1080/02723646.2018.1559583.
- Nicu I.C.: Frequency ratio and GIS-based evaluation of landslide susceptibility applied to cultural heritage assessment. Journal of Cultural Heritage, vol. 28, 2017, pp. 172–176. https://doi.org/10.1016/j.culher.2017.06.002.
- Oh H.-J., Lee S., Hong S.-M.: Landslide susceptibility assessment using frequency ratio technique with iterative random sampling. Journal of Sensors, vol. 2017, 2017, 3730913. https://doi.org/10.1155/2017/3730913.
- Darminto M.R., Widodo A., Alfatinah A., Chu H.J.: High-resolution landslide susceptibility map generation using machine learning (case study in Pacitan, Indonesia). International Journal on Advanced Science, Engineering and Information Technology, vol. 11(1), 2021, pp. 369–379. https://doi.org/10.18517/ijaseit.11.1.11679.
- Park S., Kim J.: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Applied Sciences, vol. 9(5), 2019, 942. https://doi.org/10.3390/app9050942.
- Sun D., Wen H., Wang D., Xu J.: A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology, vol. 362, 2020, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
- Taalab K., Cheng T., Zhang Y.: Mapping landslide susceptibility and types using Random Forest. Big Earth Data, vol. 2(2), 2018, pp. 159–178. https://doi.org/10.1080/20964471.2018.1472392.
- Youssef A.M., Pourghasemi H.R., Pourtaghi Z.S., Al-Katheeri M.M.: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, vol. 13(5), 2016, pp. 839–856. https://doi.org/10.1007/s10346-015-0614-1.
- Guzzetti F., Manunta M., Ardizzone F., Pepe A., Cardinali M., Zeni G., Reichenbach P., Lanari R.: Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, vol. 166(8–9), 2009, pp. 1425–1459. https://doi.org/10.1007/s00024-009-0491-4.
- van Westen C.J.: The modelling of landslide hazards using GIS. Surveys in Geophysics, vol. 21(2–3), 2000, pp. 241–255. https://doi.org/10.1023/A:1006794127521.
- van Bemmelen R.W.: General geology of Indonesia and adjacent archipelagoes: The East Indies, inclusive of the British part of Borneo, the Malay Peninsula, the Philippine Islands, Eastern New Guinea, Christmas Island, and the Andamanand Nicobar Islands. 1949. https://api.semanticscholar.org/CorpusID:177002077.
- Djuri: Peta geologi lembar Arjawinangun, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung 1973.
- Djuri: Peta geologi lembar Arjawinangun, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung 1995.
- Pradhan B., Lee S.: Landslide risk analysis using artificial neural network model focussing on different training sites. International Journal of the Physical Sciences, vol. 4(1), 2009, pp. 001–015.
- Rasyid A.R., Bhandary N.P., Yatabe R.: Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, vol. 3(1), 2016, 19. https://doi.org/10.1186/s40677-016-0053-x.
- Breiman L.: Random forests. Machine Learning, vol. 45(1), 2001, pp. 5–32. https://doi.org/10.1023/A:1010933404324.
- Biau G., Scornet E.: A random forest guided tour. TEST, vol. 25(2), 2016, pp. 197–227. https://doi.org/10.1007/s11749-016-0481-7.
- Dietterich T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, vol. 10(7), 1998, pp. 1895–1923. https://doi.org/10.1162/089976698300017197.
- Kavzoglu T.: Object-oriented random forest for high resolution land cover mapping using Quickbird-2 imagery. [in:] Samui P., Sekhar S., Balas V.E. (eds.), Handbook of Neural Computation, Academic Press, Cambridge, MA 2017, pp. 607–619. https://doi.org/10.1016/B978-0-12-811318-9.00033-8.
- Nakileza B.R., Nedala S.: Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenvironmental Disasters, vol. 7(1), 2020, 27. https://doi.org/10.1186/s40677-020-00160-0.
References
Fathani T.F., Legono D., Karnawati D.: A numerical model for the analysis of rapid landslide motion. Geotechnical and Geological Engineering, vol. 35(5), 2017, pp. 2253–2268. https://doi.org/10.1007/s10706-017-0241-9.
Marelyn Telun D., Tham Fatt N., Mohd Farid A.K., Pereira J.J.: Landslide susceptibility modeling using a hybrid bivariate statistical and expert consultation approach in Canada Hill, Sarawak, Malaysia. Frontiers in Earth Science, vol. 9, 2021, pp. 1–15. https://doi.org/10.3389/feart.2021.616225.
Salehpour Jam A., Mosaffaie J., Tabatabaei M.R.: Raster-based landslide susceptibility mapping using compensatory MADM methods. Environmental Modelling & Software, vol. 159, 2023, 105567. https://doi.org/10.1016/j.envsoft.2022.105567.
Moazzam M.F.U., Vansarochana A., Boonyanuphap J., Choosumrong S., Rahman G., Djueyep G.P.: Spatio-statistical comparative approaches for landslide susceptibility modeling: Case of Mae Phun, Uttaradit Province, Thailand. SN Applied Sciences, vol. 2(3), 2020, 384. https://doi.org/10.1007/s42452-020-2106-8.
Dou J., Yunus A.P., Bui D.T., Merghadi A., Sahana M., Zhu Z., Chen C.-W., Khosravi K., Yang Y., Pham B.T.: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of The Total Environment, vol. 662, 2019, pp. 332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221.
Naryanto H.S.: Analisis Kejadian Bencana Tanah Longsor Banjarnegara, Provinsi Jawa Tengah the December 12, 2014 Landslide Disaster Analysis in Jemblung Area, Sampang Village, Karangkobar Subdistrict, Banjarnegara District, Central Java. Alami: Jurnal Teknologi Reduksi Risiko Bencana, vol. 1(1), 2017, pp. 1–10. https://doi.org/10.29122/alami.v1i1.122.
Muriyatmoko D., Utama S.N., Pradhana F.R., Umami J., Rozaqi A.J., Setyaningrum H.: Landslide prediction model of prone areas in Pulung, Ponorogo East Java. Procedia Computer Science, vol. 161, 2019, pp. 747–755. https://doi.org/10.1016/j.procs.2019.11.179.
Baral N., Karna A.K., Gautam S.: Landslide susceptibility assessment using modified frequency ratio model in Kaski District, Nepal. International Journal of Engineeringand Management Research, vol. 11(1), 2021, pp. 167–177. https://doi.org/10.31033/ijemr.11.1.23.
Pradhan B., Mansor S., Pirasteh S., Buchroithner M.F.: Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing, vol. 32(14), 2011, pp. 4075–4087. https://doi.org/10.1080/01431161.2010.484433.
Vineetha P., Sarun S., Sheela A.M.: Landslide susceptibility analysis using Frequency Ratio Model in a Tropical Region, South East Asia. Journal of Geography, Environment and Earth Science International, vol. 22(2), 2019, pp. 1–13. https://doi.org/10.9734/jgeesi/2019/v22i230140.
Fathani T.F., Syah A., Faris F.: A numerical analysis of landslide movements considering the erosion and deposition along the flow path. Journal of the Civil Engineering Forum, vol. 5(3), 2019, 187. https://doi.org/10.22146/jcef.43808.
Chen W., Peng J., Hong H., Shahabi H., Pradhan B., Liu J., Zhu A.-X., Pei X., Duan Z.: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of The Total Environment, vol. 626, 2018, pp. 1121–1135. https://doi.org/10.1016/j.scitotenv.2018.01.124.
Nhu V.-H., Mohammadi A., Shahabi H., Ahmad B.B., Al-Ansari N., Shirzadi A., Clague J.J., Jaafari A., Chen W., Nguyen H.: Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. International Journal of Environmental Research and Public Health, vol. 17(14), 2020, 4933. https://doi.org/10.3390/ijerph17144933.
Wang H., Zhang L., Yin K., Luo H., Li J.: Landslide identification using machine learning. Geoscience Frontiers, vol. 12(1), 2021, pp. 351–364. https://doi.org/10.1016/j.gsf.2020.02.012.
Wang Y., Sun D., Wen H., Zhang H., Zhang F.: Comparison of random forest model and frequency ratio model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). International Journal of Environmental Research and Public Health, vol. 17(12), 2020, 4206. https://doi.org/10.3390/ijerph17124206.
Zhou X., Wen H., Zhang Y., Xu J., Zhang W.: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers, vol. 12(5), 2021, 101211. https://doi.org/10.1016/j.gsf.2021.101211.
Azarafza M., Azarafza M., Akgün H., Atkinson P.M., Derakhshani R.: Deep learning-based landslide susceptibility mapping. Scientific Reports, vol. 11(1), 2021, 24112. https://doi.org/10.1038/s41598-021-03585-1.
Hong Y., Adler R., Huffman G.: Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, vol. 43(2), 2007, pp. 245–256. https://doi.org/10.1007/s11069-006-9104-z.
Xing Y., Yue J., Guo Z., Chen Y., Hu J., Travé A.: Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang Mountains of China. Frontiers in Earth Science, vol. 9, 2021, pp. 1–15. https://doi.org/10.3389/feart.2021.722491.
Shirzadi A., Soliamani K., Habibnejhad M., Kavian A., Chapi K., Shahabi H., Chen W., Khosravi K., Thai Pham B., Pradhan B., Ahmad A., Ahmad B.B., Bui D.T.: Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, vol. 18(11), 2018, 3777. https://doi.org/10.3390/s18113777.
Akinci H., Kilicoglu C., Dogan S.: Random forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey. ISPRS International Journal of Geo-Information, vol. 9(9), 2020, 553. https://doi.org/10.3390/ijgi9090553.
Abdo H.G.: Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria. International Journal of Environmental Science and Technology, vol. 19(4), 2022, pp. 2599–2618. https://doi.org/10.1007/s13762-021-03322-1.
Sørensen R., Zinko U., Seibert J.: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, vol. 10(1), 2006, pp. 101–112. https://doi.org/10.5194/hess-10-101-2006.
Efendi D., Hidayah E., Hasanuddin A.: Mapping of landslide susceptible zones by using frequency ratios at Bluncong subwatershed, Bondowoso Regency. U KaRsT, vol. 5(1), 2021, pp. 126–141. https://doi.org/10.30737/ukarst.v5i1.1455.
Hong L., Ouyang M., Peeta S., He X., Yan Y.: Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliability Engineering & System Safety, vol. 137, 2015, pp. 58–68. https://doi.org/10.1016/j.ress.2014.12.013.
Javier D.N., Kumar L.: Frequency ratio landslide susceptibility estimation in a tropical mountain region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3/W8, 2019, pp. 173–179. https://doi.org/10.5194/isprs-archives-XLII-3-W8-173-2019.
Kose D.D., Turk T.: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Physical Geography, vol. 40(5), 2019, pp. 481–501. https://doi.org/10.1080/02723646.2018.1559583.
Nicu I.C.: Frequency ratio and GIS-based evaluation of landslide susceptibility applied to cultural heritage assessment. Journal of Cultural Heritage, vol. 28, 2017, pp. 172–176. https://doi.org/10.1016/j.culher.2017.06.002.
Oh H.-J., Lee S., Hong S.-M.: Landslide susceptibility assessment using frequency ratio technique with iterative random sampling. Journal of Sensors, vol. 2017, 2017, 3730913. https://doi.org/10.1155/2017/3730913.
Darminto M.R., Widodo A., Alfatinah A., Chu H.J.: High-resolution landslide susceptibility map generation using machine learning (case study in Pacitan, Indonesia). International Journal on Advanced Science, Engineering and Information Technology, vol. 11(1), 2021, pp. 369–379. https://doi.org/10.18517/ijaseit.11.1.11679.
Park S., Kim J.: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Applied Sciences, vol. 9(5), 2019, 942. https://doi.org/10.3390/app9050942.
Sun D., Wen H., Wang D., Xu J.: A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology, vol. 362, 2020, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
Taalab K., Cheng T., Zhang Y.: Mapping landslide susceptibility and types using Random Forest. Big Earth Data, vol. 2(2), 2018, pp. 159–178. https://doi.org/10.1080/20964471.2018.1472392.
Youssef A.M., Pourghasemi H.R., Pourtaghi Z.S., Al-Katheeri M.M.: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, vol. 13(5), 2016, pp. 839–856. https://doi.org/10.1007/s10346-015-0614-1.
Guzzetti F., Manunta M., Ardizzone F., Pepe A., Cardinali M., Zeni G., Reichenbach P., Lanari R.: Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, vol. 166(8–9), 2009, pp. 1425–1459. https://doi.org/10.1007/s00024-009-0491-4.
van Westen C.J.: The modelling of landslide hazards using GIS. Surveys in Geophysics, vol. 21(2–3), 2000, pp. 241–255. https://doi.org/10.1023/A:1006794127521.
van Bemmelen R.W.: General geology of Indonesia and adjacent archipelagoes: The East Indies, inclusive of the British part of Borneo, the Malay Peninsula, the Philippine Islands, Eastern New Guinea, Christmas Island, and the Andamanand Nicobar Islands. 1949. https://api.semanticscholar.org/CorpusID:177002077.
Djuri: Peta geologi lembar Arjawinangun, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung 1973.
Djuri: Peta geologi lembar Arjawinangun, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung 1995.
Pradhan B., Lee S.: Landslide risk analysis using artificial neural network model focussing on different training sites. International Journal of the Physical Sciences, vol. 4(1), 2009, pp. 001–015.
Rasyid A.R., Bhandary N.P., Yatabe R.: Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, vol. 3(1), 2016, 19. https://doi.org/10.1186/s40677-016-0053-x.
Breiman L.: Random forests. Machine Learning, vol. 45(1), 2001, pp. 5–32. https://doi.org/10.1023/A:1010933404324.
Biau G., Scornet E.: A random forest guided tour. TEST, vol. 25(2), 2016, pp. 197–227. https://doi.org/10.1007/s11749-016-0481-7.
Dietterich T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, vol. 10(7), 1998, pp. 1895–1923. https://doi.org/10.1162/089976698300017197.
Kavzoglu T.: Object-oriented random forest for high resolution land cover mapping using Quickbird-2 imagery. [in:] Samui P., Sekhar S., Balas V.E. (eds.), Handbook of Neural Computation, Academic Press, Cambridge, MA 2017, pp. 607–619. https://doi.org/10.1016/B978-0-12-811318-9.00033-8.
Nakileza B.R., Nedala S.: Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenvironmental Disasters, vol. 7(1), 2020, 27. https://doi.org/10.1186/s40677-020-00160-0.