Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Calculation of Road Traffic Noise, Development of Data, and Spatial Interpolations for Traffic Noise Visualization in Three-dimensional Space
Corresponding Author(s) : Nevil Wickramathilaka
Geomatics and Environmental Engineering,
Vol. 17 No. 5 (2023): Geomatics and Environmental Engineering
Abstract
Road traffic noise visualization is vital in three-dimensional (3D) space. Designing noise observation points (NOPs) and the developments of spatial interpolations are key elements for the visualization of traffic noise in 3D. Moreover, calculating road traffic noise levels by means of a standard noise model is vital. This study elaborates on the developments of data and spatial interpolations in 3D noise visualization. In 3D spatial interpolation, the value is interpolated in both horizontal and vertical directions. Eliminating flat triangles is vital in the vertical direction. Inverse distance weighted (IDW), kriging, and triangular irregular network (TIN) are widely used to interpolate noise levels. Because these interpolations directly support the interpolation of three parameters, the developments of spatial interpolations should be applied to interpolate noise levels in 3D. The TIN noise contours are primed to visualize traffic noise levels while IDW and kriging provide irregular contours. Further, this study has identified that the TIN noise contours fit exactly with NOPs in 3D. Moreover, advanced kriging interpolation such as empirical Bayesian kriging (EBK) also provides irregular shape contours and this study develops a comparison for such contours. The 3D kriging in EBK provides a significant approach to interpolate noise in 3D. The 3D kriging voxels show a higher accurate visualization than TIN noise contours.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Iglesias-Merchan C., Laborda-Somolinos R., González-Ávila S., Elena-Rosselló R.: Spatio-temporal changes of road traffic noise pollution at eco-regional scale. Environmental Pollution, vol. 286, 2021, 117291. https://doi.org/10.1016/j.envpol.2021.117291.
- Subramani T., Kavitha M., Sivaraj K.P.: Modelling of traffic noise pollution. International Journal of Engineering Research and Application, vol. 2(3), 2012, pp. 3175–3182. https://www.ijera.com/papers/Vol2_issue3/TB2331753182.pdf [access: 11.06.2023].
- Majid M., Abid R., Ali A., Ahmad S.: Physiological and psychological impacts of noise pollution on the workers; a case study in Textile Mills of Multan Pakistan. Pakistan Journal of Science, vol. 73(2), 2021, pp. 397–402. https://pjosr.com/index.php/pjs/article/view/677/185 [access: 11.06.2023].
- Rahmani S., Mousavi S.M., Kamali M.J.: Modeling of road-traffic noise with the use of genetic algorithm. Applied Soft Computing, vol. 11(1), 2011, pp. 1008–1013. https://doi.org/10.1016/j.asoc.2010.01.022.
- Salomons E.M., Zhou H., Lohman W.J.: Efficient numerical modeling of traffic noise. Journal of the Acoustical Society of America, vol. 127(2), 2010, pp. 796–803. https://doi.org/10.1121/1.3273890.
- Monazzam M.R., Karimi E., Shahbazi H., Shahidzadeh H.: Effect of cycling development as a non-motorized transport on reducing air and noise pollution-case study: Central districts of Tehran. Urban Climate, vol. 38, 2021, 100887. https://doi.org/10.1016/j.uclim.2021.100887.
- Butler D.: Noise management: Sound and vision, vol. 427, 2004, pp. 480–481. https://doi.org/10.1038/427480a.
- Lee H.M., Luo W., Xie J., Lee H.P.: Traffic noise reduction strategy in a large city and an analysis of its effect. Applied Sciences, vol. 12(12), 2022, 6027. https://doi.org/10.3390/app12126027.
- Ranjbar H.R., Gharagozlou A.R., Vafaei Nejad A.R.: 3D analysis and investigation of traffic noise impact from Hemmat Highway located in Tehran on buildings and surrounding areas. Journal of Geographic Information System, vol. 4(4), 2012, pp. 322–334. https://doi.org/10.4236/jgis.2012.44037.
- Mishra R.K., Mishra A.R., Singh A.: Traffic noise analysis using RLS-90 model in urban city. [in:] Noise control for a better environment: Proceedings of the 48th International Congress and Exhibition on Noise Control Engineering INTERNOISE 2019, Madrid, June 16–19, 2019, vol. 13, 2019, pp. 6490–6502.
- Dubey R., Bharadwaj S., Sharma V.B., Bhatt A., Biswas S.: Smartphone-based traffic noise mapping system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B4, 2022, pp. 613–620. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-613-2022.
- Dipeshkumar R.S., Bhaven N.T.: A review on GIS-based approach for road traffic noise mapping. Indian Journal of Science and Technology, vol. 12(14), 2019, pp. 1–6. https://doi.org/10.17485/ijst/2019/v12i14/132481.
- Adza W.K., Hursthouse A.S., Miller J., Boakye D.: Exploring the combined association between road traffic noise and air quality using QGIS. International Journal of Environmental Research and Public Health, vol. 19(24), 2022, 17057. https://doi.org/10.3390/ijerph192417057.
- Gozalo R.G., Suárez E., Montenegro A.L., Arenas J.P., Morillas Barrigón J.M., Montes González D.: Noise estimation using road and urban features. Sustainability, vol. 12(21), 2020, 9217. https://doi.org/10.3390/su12219217.
- Ranpise R.B., Tandel B.N., Singh V.A.: Development of traffic noise prediction model for major arterial roads of tier-II city of India (Surat) using artificial neural network. Noise Mapping, vol. 8(1), 2021, pp. 172–184. https://doi.org/10.1515/noise-2021-0013.
- Adulaimi A.A.A., Pradhan B., Chakraborty S., Alamri A.: Traffic noise modelling using land use regression model based on machine learning, statistical regression and GIS. Energies, vol. 14(16), 2021, 5095. https://doi.org/10.3390/en14165095.
- Islam Z., Abdullah F., Khanom M.: Evaluation of traffic accessibility condition and noise pollution in Dhaka City of Bangladesh. American Journal of Traffic and Transportation Engineering, vol. 6(2), 2021, pp. 43–51. https://doi.org/10.11648/j.ajtte.20210602.12.
- Malherbe M., McIntyre T., Hattingh T.V., Leresche P.M., Haussmann N.S.: Mammal road-type associations in Kruger National Park, South Africa: Common mammals do not avoid tar roads more than dirt roads. Ecology and Evolution, vol. 11(12), 2021, pp. 15622–15629. https://doi.org/10.1002/ece3.8190.
- Seong J.C., Park T.H., Ko J.H., Chang S.I., Kim M., Holt J.B., Mehdi M.R.: Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environment International, vol. 37(8), 2011, pp. 1336–1341. https://doi.org/10.1016/j.envint.2011.05.019.
- Sabillon C., Hernandez J., Li R., Huang., Prozzi J.A.: Efficient Model for Predicting Friction on Texas Highway Network. Technical Report 0-7031-1. The University of Texas at Austin, Center for Transportation Research, Austin, TH, USA, 2023. https://rosap.ntl.bts.gov/view/dot/66238 [access: 11.06.2023].
- Quartieri J., Mastorakis N.E., Iannone G., Guarnaccia C., D’Ambrosio S., Troisi A., Lenza T.L.L.: A review of traffic noise predictive noise models. Recent Advances in Applied and Theoretical Mechanics, 2009, pp. 72–80.
- Zafar M.I., Dubey R., Bharadwaj S., Kumar A., Paswan K.K., Srivastava A., Tiwary S.K., Biswas S.: GIS based road traffic noise mapping and assessment of health hazards for a developing urban intersection. Acoustics, vol. 5(1), 2023, pp. 87–119. https://doi.org/10.3390/acoustics5010006.
- Rajakumara H.N., Gowda R.M.M.: Road traffic noise prediction models: a review. International Journal of Sustainable Development and Planning, vol. 3(3), 2008, pp. 257–271. https://doi.org/10.2495/SDP-V3-N3-257-271.
- Kurakula V.K., Kuffer M.: 3D noise modeling for urban environmental planning and management. [in:] Schrenk M., Popovich V.V., Engelke D., Eliseireal P. (eds.), CORP 008: Mobility Nodes as Innovation Hubs: Proceedings of 13th International Conference on Urban Planning, Regional Development and Information Society, Vienna, May 19–21 2008, Competence Center of Urban and Regional Planning, Schwechat 2008, pp. 517–523.
- Huang B., Pan Z., Liu Z., Hou G., Yang H.: Acoustic amenity analysis for high-rise building along urban expressway: Modeling traffic noise vertical propagation using neural networks. Transportation Research. Part D: Transport and Environment, vol. 53, 2017, pp. 63–77. https://doi.org/10.1016/j.trd.2017.04.001.
- Lu L., Becker T., Löwner M.-O.: 3D Complete Traffic Noise Analysis Based on CityGML. [in:] Abdul-Rahman A. (ed.), Advances in 3D Geoinformation, Lecture Notes in Geoinformation and Cartography, Springer, Cham 2017, pp. 265–283. https://doi.org/10.1007/978-3-319-25691-7_15.
- Puyana-Romero V., Cueto J.L., Gey R.: A 3D GIS tool for the detection of noise hot-spots from major roads. Transportation Research. Part D: Transport and Environment, vol. 84, 2020, 102376. https://doi.org/10.1016/j.trd.2020.102376.
- Li J., Heap A.D.: Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, vol. 53, 2014, pp. 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008.
- Hu Q., Li Z., Wang L., Huang, Wang Y., Li L.: Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water, vol. 11(3), 2019, 579. https://doi.org/10.3390/w11030579.
- Jiang Q., Peng J., Biswas A., Hu J., Zhao R., He K., Shi Z.: Characterising dryland salinity in three dimensions. Science of the Total Environment, vol. 682, 2019, pp. 190–199. https://doi.org/10.1016/j.scitotenv.2019.05.037.
- Harman B.I., Koseoglu H., Yigit C.O.: Performance evaluation of IDW, Kriging and multiquadric interpolation methods in producing noise mapping: A case study at the city of Isparta, Turkey. Applied Acoustics, vol. 112, 2016, pp. 147–157. https://doi.org/10.1016/j.apacoust.2016.05.024.
- Che D., Jia Q.: Three-dimensional geological modeling of coal seams using weighted Kriging method and multi-Source data. IEEE Access, vol. 7, 2019, pp. 118037–118045. https://doi.org/10.1109/Access.2019.2936811.
- Comber A., Zeng W.: Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, vol. 13(10), 2019, e12465. https://doi.org/10.1111/gec3.12465.
- Laxmi V., Dey J., Kalawapudi K., Vijay R., Kumar R.: An innovative approach of urban noise monitoring using cycle in Nagpur, India. Environmental Science and Pollution Research, vol. 26, 2019, pp. 36812–36819. https://doi.org/10.1007/s11356-019-06817-0.
- Alcaras E., Amoroso P.P., Parente C.: The influence of interpolated point location and density on 3D bathymetric models generated by kriging methods: An application on the Giglio Island Seabed (Italy). Geosciences, vol. 12(2), 2022, 62. https://doi.org/10.3390/geosciences12020062.
- Maiti P., Mitra D.: Ordinary kriging interpolation for indoor 3D REM. Journal of Ambient Intelligence and Humanized Computing, 2022, pp. 1–15. https://doi.org/10.1007/s12652-022-03784-2.
- He L., Zhang J., Chen S., Hou M., Chen J.: Three-dimensional hydrogeological modeling method and application based on TIN-GTP-TEN. Earth Science Informatics, vol. 15(1), 2022, pp. 337–350. https://doi.org/10.1007/s12145-021-00727-x.
- Tomczak M.: Spatial interpolation and its uncertainty using automated anisotropic Inverse Distance Weighting (IDW)-Cross-validation/Jackknife Approach. Journal of Geographic Information and Decision Analysis, vol. 2(2), 1998, pp. 18–30.
- Samal K.K.R., Babu K.S., Das S.K.: Spatio-temporal prediction of air quality using distance-based interpolation and deep learning techniques. EAI Endorsed Transactions on Smart Cities, vol. 5(14), 2021,168139. https://doi.org/10.4108/eai.15-1-2021.168139.
- Schneck T., Telbisz T., Zsuffa I.: Precipitation interpolation using digital terrain model and multivariate regression in hilly and low mountainous areas of Hungary. Hungarian Geographical Bulletin, vol. 70(1), 2021, pp. 35–48. https://doi.org/10.15201/hungeobull.70.1.3.
- Neissi L., Golabi M., Gorman J.M.: Spatial interpolation of sodium absorption ratio: A study combining a decision tree model and GIS. Ecological Indicators, vol. 117, 2020, 106611. https://doi.org/10.1016/j.ecolind.2020.106611.
- Purnomo H.: A practical application of Inverse Distance Weighting method to identify cobalt anomaly distribution in Laterite Deposit (Case study in Block R, Wasile Subdistrict, East Halmahera. [in:] Prastowo R., Nurdiyanto H. (eds.), ICITID 2021: Proceedings of the 2nd International Conference on Industrial and Technology and Information Design, 30 August 2021, Yogyakarta, Indonesia, EAI, 2021. https://doi.org/10.4108/eai.30-8-2021.2311529.
- Varentsov M., Esau I., Wolf T.: High-resolution temperature mapping by geostatistical kriging with external drift from large-eddy simulations. Monthly Weather Review, vol. 148(3), 2020, pp. 1029–1048. https://doi.org/10.1175/MWR-D-19-0196.1.
- Fung K.F., Chew K.S., Huang Y.F., Ahmed A.N., Teo F.Y., Ng J.L., Elshafie A.: Evaluation of spatial interpolation methods and spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Ain Shams Engineering Journal, vol. 13(2), 2022, 101571. https://doi.org/10.1016/j.asej.2021.09.001.
- Debnath A., Singh P.K.: Environmental traffic noise modelling of Dhanbad township area – A mathematical based approach. Applied Acoustics, vol. 129, 2018, pp. 161–172. https://doi.org/10.1016/j.apacoust.2017.07.023.
- Maleika W.: Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics, vol. 12(4), 2020, pp. 397–407. https://doi.org/10.1007/s12518-020-00307-6.
- Aumond P., Can A., Mallet V., De Coensel B., Ribeiro C., Botteldooren D., Lavandier C.: Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. The Journal of the Acoustical Society of America, vol. 143(5), 2018, pp. 2847–2857. https://doi.org/10.1121/1.5034799.
- Lesieur A., Mallet V., Aumond P., Can A.: Data assimilation for urban noise mapping with a meta-model. Applied Acoustics, vol. 178, 2021, 107938. https://doi.org/10.1016/j.apacoust.2021.107938.
- van Groenigen J.W.: The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, vol. 97(3–4), 2000, pp. 223–236. https://doi.org/10.1016/S0016-7061(00)00040-9.
- Ramadhan M.D., Marwanza I., Nas C., Azizi M.A., Dahani W., Kurniawati R.: Drill holes spacing analysis for estimation and classification of coal resources based on variogram and kriging. IOP Conference Series: Earth and Environmental Science, vol. 819(1), 2021, 012026. https://doi.org/10.1088/1755-1315/819/1/012026.
- Jaman N.I. Adhikary S.K.: A positive kriging approach for missing rainfall estimation. [in:] ICCESD 2020: Proceedings of the 5th International Conference on Civil Engineering for Sustainable Development, 7–9 February 2020, KUET, Khulna, Bangladesh, 2020.
- Wenzhong S.: Development of a hybrid model for three-dimensional GIS. Geo-Spatial Information Science, vol. 3(2), 2000, pp. 6–12.
- Zelt C.A., Azaria A., Levander A.: 3D seismic refraction traveltime tomography at a groundwater contamination site. Geophysics, vol. 71(5), 2006, pp. H67–H78. https://doi.org/10.1190/1.2258094.
- Hammad A.W.A., Akbarnezhad A., Rey D.: A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Automation in Construction, vol. 61, 2016, pp. 73–85. https://doi.org/10.1016/j.autcon.2015.10.010.
- Venkataraman S., Asante K.O.: Voxel-based analysis and visualization of rainfall data. [in:] Pecora 16 “Global Priorities in Land Remote Sensing”, October 23–27, 2005, Sioux Falls, South Dakota 2005.
- Grunwald S., Barak P., Rooney D.: Web-based virtual models for the Earth Science Community. [in:] ASAE International Meeting in Sacramento, CA, July 29–August 1, 2001, American Society of Agricultural Engineers, 2001, pp. 1–9.
- What is Empirical Bayesian Kriging 3D? ESRI, 2020. https://pro.arcgis.com/en/proapp/latest/help/analysis/geostatistical-analyst/what-is-empirical-bayesian-kriging-3d-.htm [access: 11.06.2023].
- Zhang Y., Ji W., Saurette D.D., Easher T.H., Li H., Shi Z., Adamchuk V.I., Biswas A.: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, vol. 366, 2020, 114253. https://doi.org/10.1016/j.geoderma.2020.114253.
- Chen C., Hu K., Li H., Yun A., Li B.: Three-dimensional mapping of soil organic carbon by combining kriging method with profile depth function. PLoS ONE, vol. 10(6), 2015, e0129038. https://doi.org/10.1371/journal.pone.0129038.
- Sukkuea A., Heednacram A.: Prediction on spatial elevation using improved kriging algorithms: An application in environmental management. Expert Systems with Applications, vol. 207, 2022, 117971. https://doi.org/10.1016/j.eswa.2022.117971.
- Izady A., Abdalla O., Ahmadi T., Chen M.: An efficient methodology to design optimal groundwater level monitoring network in Al-Buraimi region, Oman. Arabian Journal of Geosciences, vol. 10(2), 2017, 26. https://doi.org/10.1007/s12517-016-2802-2.
- Xu Y., Tong X., Stilla U.: Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Automation in Construction, vol. 126. 2021, 103675. https://doi.org/10.1016/j.autcon.2021.103675.
- Saglam A., Makineci H.B., Baykan N.A., Baykan Ö.K.: Boundary constrained voxel segmentation for 3D point clouds using local geometric differences. Expert Systems with Applications, vol. 157, 2020, 113439. https://doi.org/10.1016/j.eswa.2020.113439.
- Wu H., Zhu Q., Guo Y., Zheng W., Zhang L., Wang Q., Zhou R., Ding Y., Wang W., Pirasteh S., Liu M.: Multi-level voxel representations for digital twin models of tunnel geological environment. International Journal of Applied Earth Observation and Geoinformation, vol. 112, 2022, 102887. https://doi.org/10.1016/j.jag.2022.102887.
- Li J., Liu P., Wang X., Cui H., Ma Y.: 3D geological implicit modeling method of regular voxel splitting based on layered interpolation data. Scientific Reports, vol. 12(1), 2022, 13840. https://doi.org/10.1038/s41598-022-17231-x.
- Hood R.A.: Accuracy of calculation of road traffic noise. Applied Acoustics, vol. 21(2), 1987 pp. 139–146. https://doi.org/10.1016/0003-682X(87)90006-5.
- ISO 9613-2:1996: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation.
- Attenborough K., Bashir I., Taherzadeh S.: Exploiting ground effects for surface transport noise abatement. Noise Mapping, vol. 3(1), 2016, pp. 1–25. https://doi.org/10.1515/noise-2016-0001.
References
Iglesias-Merchan C., Laborda-Somolinos R., González-Ávila S., Elena-Rosselló R.: Spatio-temporal changes of road traffic noise pollution at eco-regional scale. Environmental Pollution, vol. 286, 2021, 117291. https://doi.org/10.1016/j.envpol.2021.117291.
Subramani T., Kavitha M., Sivaraj K.P.: Modelling of traffic noise pollution. International Journal of Engineering Research and Application, vol. 2(3), 2012, pp. 3175–3182. https://www.ijera.com/papers/Vol2_issue3/TB2331753182.pdf [access: 11.06.2023].
Majid M., Abid R., Ali A., Ahmad S.: Physiological and psychological impacts of noise pollution on the workers; a case study in Textile Mills of Multan Pakistan. Pakistan Journal of Science, vol. 73(2), 2021, pp. 397–402. https://pjosr.com/index.php/pjs/article/view/677/185 [access: 11.06.2023].
Rahmani S., Mousavi S.M., Kamali M.J.: Modeling of road-traffic noise with the use of genetic algorithm. Applied Soft Computing, vol. 11(1), 2011, pp. 1008–1013. https://doi.org/10.1016/j.asoc.2010.01.022.
Salomons E.M., Zhou H., Lohman W.J.: Efficient numerical modeling of traffic noise. Journal of the Acoustical Society of America, vol. 127(2), 2010, pp. 796–803. https://doi.org/10.1121/1.3273890.
Monazzam M.R., Karimi E., Shahbazi H., Shahidzadeh H.: Effect of cycling development as a non-motorized transport on reducing air and noise pollution-case study: Central districts of Tehran. Urban Climate, vol. 38, 2021, 100887. https://doi.org/10.1016/j.uclim.2021.100887.
Butler D.: Noise management: Sound and vision, vol. 427, 2004, pp. 480–481. https://doi.org/10.1038/427480a.
Lee H.M., Luo W., Xie J., Lee H.P.: Traffic noise reduction strategy in a large city and an analysis of its effect. Applied Sciences, vol. 12(12), 2022, 6027. https://doi.org/10.3390/app12126027.
Ranjbar H.R., Gharagozlou A.R., Vafaei Nejad A.R.: 3D analysis and investigation of traffic noise impact from Hemmat Highway located in Tehran on buildings and surrounding areas. Journal of Geographic Information System, vol. 4(4), 2012, pp. 322–334. https://doi.org/10.4236/jgis.2012.44037.
Mishra R.K., Mishra A.R., Singh A.: Traffic noise analysis using RLS-90 model in urban city. [in:] Noise control for a better environment: Proceedings of the 48th International Congress and Exhibition on Noise Control Engineering INTERNOISE 2019, Madrid, June 16–19, 2019, vol. 13, 2019, pp. 6490–6502.
Dubey R., Bharadwaj S., Sharma V.B., Bhatt A., Biswas S.: Smartphone-based traffic noise mapping system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B4, 2022, pp. 613–620. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-613-2022.
Dipeshkumar R.S., Bhaven N.T.: A review on GIS-based approach for road traffic noise mapping. Indian Journal of Science and Technology, vol. 12(14), 2019, pp. 1–6. https://doi.org/10.17485/ijst/2019/v12i14/132481.
Adza W.K., Hursthouse A.S., Miller J., Boakye D.: Exploring the combined association between road traffic noise and air quality using QGIS. International Journal of Environmental Research and Public Health, vol. 19(24), 2022, 17057. https://doi.org/10.3390/ijerph192417057.
Gozalo R.G., Suárez E., Montenegro A.L., Arenas J.P., Morillas Barrigón J.M., Montes González D.: Noise estimation using road and urban features. Sustainability, vol. 12(21), 2020, 9217. https://doi.org/10.3390/su12219217.
Ranpise R.B., Tandel B.N., Singh V.A.: Development of traffic noise prediction model for major arterial roads of tier-II city of India (Surat) using artificial neural network. Noise Mapping, vol. 8(1), 2021, pp. 172–184. https://doi.org/10.1515/noise-2021-0013.
Adulaimi A.A.A., Pradhan B., Chakraborty S., Alamri A.: Traffic noise modelling using land use regression model based on machine learning, statistical regression and GIS. Energies, vol. 14(16), 2021, 5095. https://doi.org/10.3390/en14165095.
Islam Z., Abdullah F., Khanom M.: Evaluation of traffic accessibility condition and noise pollution in Dhaka City of Bangladesh. American Journal of Traffic and Transportation Engineering, vol. 6(2), 2021, pp. 43–51. https://doi.org/10.11648/j.ajtte.20210602.12.
Malherbe M., McIntyre T., Hattingh T.V., Leresche P.M., Haussmann N.S.: Mammal road-type associations in Kruger National Park, South Africa: Common mammals do not avoid tar roads more than dirt roads. Ecology and Evolution, vol. 11(12), 2021, pp. 15622–15629. https://doi.org/10.1002/ece3.8190.
Seong J.C., Park T.H., Ko J.H., Chang S.I., Kim M., Holt J.B., Mehdi M.R.: Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environment International, vol. 37(8), 2011, pp. 1336–1341. https://doi.org/10.1016/j.envint.2011.05.019.
Sabillon C., Hernandez J., Li R., Huang., Prozzi J.A.: Efficient Model for Predicting Friction on Texas Highway Network. Technical Report 0-7031-1. The University of Texas at Austin, Center for Transportation Research, Austin, TH, USA, 2023. https://rosap.ntl.bts.gov/view/dot/66238 [access: 11.06.2023].
Quartieri J., Mastorakis N.E., Iannone G., Guarnaccia C., D’Ambrosio S., Troisi A., Lenza T.L.L.: A review of traffic noise predictive noise models. Recent Advances in Applied and Theoretical Mechanics, 2009, pp. 72–80.
Zafar M.I., Dubey R., Bharadwaj S., Kumar A., Paswan K.K., Srivastava A., Tiwary S.K., Biswas S.: GIS based road traffic noise mapping and assessment of health hazards for a developing urban intersection. Acoustics, vol. 5(1), 2023, pp. 87–119. https://doi.org/10.3390/acoustics5010006.
Rajakumara H.N., Gowda R.M.M.: Road traffic noise prediction models: a review. International Journal of Sustainable Development and Planning, vol. 3(3), 2008, pp. 257–271. https://doi.org/10.2495/SDP-V3-N3-257-271.
Kurakula V.K., Kuffer M.: 3D noise modeling for urban environmental planning and management. [in:] Schrenk M., Popovich V.V., Engelke D., Eliseireal P. (eds.), CORP 008: Mobility Nodes as Innovation Hubs: Proceedings of 13th International Conference on Urban Planning, Regional Development and Information Society, Vienna, May 19–21 2008, Competence Center of Urban and Regional Planning, Schwechat 2008, pp. 517–523.
Huang B., Pan Z., Liu Z., Hou G., Yang H.: Acoustic amenity analysis for high-rise building along urban expressway: Modeling traffic noise vertical propagation using neural networks. Transportation Research. Part D: Transport and Environment, vol. 53, 2017, pp. 63–77. https://doi.org/10.1016/j.trd.2017.04.001.
Lu L., Becker T., Löwner M.-O.: 3D Complete Traffic Noise Analysis Based on CityGML. [in:] Abdul-Rahman A. (ed.), Advances in 3D Geoinformation, Lecture Notes in Geoinformation and Cartography, Springer, Cham 2017, pp. 265–283. https://doi.org/10.1007/978-3-319-25691-7_15.
Puyana-Romero V., Cueto J.L., Gey R.: A 3D GIS tool for the detection of noise hot-spots from major roads. Transportation Research. Part D: Transport and Environment, vol. 84, 2020, 102376. https://doi.org/10.1016/j.trd.2020.102376.
Li J., Heap A.D.: Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, vol. 53, 2014, pp. 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008.
Hu Q., Li Z., Wang L., Huang, Wang Y., Li L.: Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water, vol. 11(3), 2019, 579. https://doi.org/10.3390/w11030579.
Jiang Q., Peng J., Biswas A., Hu J., Zhao R., He K., Shi Z.: Characterising dryland salinity in three dimensions. Science of the Total Environment, vol. 682, 2019, pp. 190–199. https://doi.org/10.1016/j.scitotenv.2019.05.037.
Harman B.I., Koseoglu H., Yigit C.O.: Performance evaluation of IDW, Kriging and multiquadric interpolation methods in producing noise mapping: A case study at the city of Isparta, Turkey. Applied Acoustics, vol. 112, 2016, pp. 147–157. https://doi.org/10.1016/j.apacoust.2016.05.024.
Che D., Jia Q.: Three-dimensional geological modeling of coal seams using weighted Kriging method and multi-Source data. IEEE Access, vol. 7, 2019, pp. 118037–118045. https://doi.org/10.1109/Access.2019.2936811.
Comber A., Zeng W.: Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, vol. 13(10), 2019, e12465. https://doi.org/10.1111/gec3.12465.
Laxmi V., Dey J., Kalawapudi K., Vijay R., Kumar R.: An innovative approach of urban noise monitoring using cycle in Nagpur, India. Environmental Science and Pollution Research, vol. 26, 2019, pp. 36812–36819. https://doi.org/10.1007/s11356-019-06817-0.
Alcaras E., Amoroso P.P., Parente C.: The influence of interpolated point location and density on 3D bathymetric models generated by kriging methods: An application on the Giglio Island Seabed (Italy). Geosciences, vol. 12(2), 2022, 62. https://doi.org/10.3390/geosciences12020062.
Maiti P., Mitra D.: Ordinary kriging interpolation for indoor 3D REM. Journal of Ambient Intelligence and Humanized Computing, 2022, pp. 1–15. https://doi.org/10.1007/s12652-022-03784-2.
He L., Zhang J., Chen S., Hou M., Chen J.: Three-dimensional hydrogeological modeling method and application based on TIN-GTP-TEN. Earth Science Informatics, vol. 15(1), 2022, pp. 337–350. https://doi.org/10.1007/s12145-021-00727-x.
Tomczak M.: Spatial interpolation and its uncertainty using automated anisotropic Inverse Distance Weighting (IDW)-Cross-validation/Jackknife Approach. Journal of Geographic Information and Decision Analysis, vol. 2(2), 1998, pp. 18–30.
Samal K.K.R., Babu K.S., Das S.K.: Spatio-temporal prediction of air quality using distance-based interpolation and deep learning techniques. EAI Endorsed Transactions on Smart Cities, vol. 5(14), 2021,168139. https://doi.org/10.4108/eai.15-1-2021.168139.
Schneck T., Telbisz T., Zsuffa I.: Precipitation interpolation using digital terrain model and multivariate regression in hilly and low mountainous areas of Hungary. Hungarian Geographical Bulletin, vol. 70(1), 2021, pp. 35–48. https://doi.org/10.15201/hungeobull.70.1.3.
Neissi L., Golabi M., Gorman J.M.: Spatial interpolation of sodium absorption ratio: A study combining a decision tree model and GIS. Ecological Indicators, vol. 117, 2020, 106611. https://doi.org/10.1016/j.ecolind.2020.106611.
Purnomo H.: A practical application of Inverse Distance Weighting method to identify cobalt anomaly distribution in Laterite Deposit (Case study in Block R, Wasile Subdistrict, East Halmahera. [in:] Prastowo R., Nurdiyanto H. (eds.), ICITID 2021: Proceedings of the 2nd International Conference on Industrial and Technology and Information Design, 30 August 2021, Yogyakarta, Indonesia, EAI, 2021. https://doi.org/10.4108/eai.30-8-2021.2311529.
Varentsov M., Esau I., Wolf T.: High-resolution temperature mapping by geostatistical kriging with external drift from large-eddy simulations. Monthly Weather Review, vol. 148(3), 2020, pp. 1029–1048. https://doi.org/10.1175/MWR-D-19-0196.1.
Fung K.F., Chew K.S., Huang Y.F., Ahmed A.N., Teo F.Y., Ng J.L., Elshafie A.: Evaluation of spatial interpolation methods and spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Ain Shams Engineering Journal, vol. 13(2), 2022, 101571. https://doi.org/10.1016/j.asej.2021.09.001.
Debnath A., Singh P.K.: Environmental traffic noise modelling of Dhanbad township area – A mathematical based approach. Applied Acoustics, vol. 129, 2018, pp. 161–172. https://doi.org/10.1016/j.apacoust.2017.07.023.
Maleika W.: Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics, vol. 12(4), 2020, pp. 397–407. https://doi.org/10.1007/s12518-020-00307-6.
Aumond P., Can A., Mallet V., De Coensel B., Ribeiro C., Botteldooren D., Lavandier C.: Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. The Journal of the Acoustical Society of America, vol. 143(5), 2018, pp. 2847–2857. https://doi.org/10.1121/1.5034799.
Lesieur A., Mallet V., Aumond P., Can A.: Data assimilation for urban noise mapping with a meta-model. Applied Acoustics, vol. 178, 2021, 107938. https://doi.org/10.1016/j.apacoust.2021.107938.
van Groenigen J.W.: The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, vol. 97(3–4), 2000, pp. 223–236. https://doi.org/10.1016/S0016-7061(00)00040-9.
Ramadhan M.D., Marwanza I., Nas C., Azizi M.A., Dahani W., Kurniawati R.: Drill holes spacing analysis for estimation and classification of coal resources based on variogram and kriging. IOP Conference Series: Earth and Environmental Science, vol. 819(1), 2021, 012026. https://doi.org/10.1088/1755-1315/819/1/012026.
Jaman N.I. Adhikary S.K.: A positive kriging approach for missing rainfall estimation. [in:] ICCESD 2020: Proceedings of the 5th International Conference on Civil Engineering for Sustainable Development, 7–9 February 2020, KUET, Khulna, Bangladesh, 2020.
Wenzhong S.: Development of a hybrid model for three-dimensional GIS. Geo-Spatial Information Science, vol. 3(2), 2000, pp. 6–12.
Zelt C.A., Azaria A., Levander A.: 3D seismic refraction traveltime tomography at a groundwater contamination site. Geophysics, vol. 71(5), 2006, pp. H67–H78. https://doi.org/10.1190/1.2258094.
Hammad A.W.A., Akbarnezhad A., Rey D.: A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Automation in Construction, vol. 61, 2016, pp. 73–85. https://doi.org/10.1016/j.autcon.2015.10.010.
Venkataraman S., Asante K.O.: Voxel-based analysis and visualization of rainfall data. [in:] Pecora 16 “Global Priorities in Land Remote Sensing”, October 23–27, 2005, Sioux Falls, South Dakota 2005.
Grunwald S., Barak P., Rooney D.: Web-based virtual models for the Earth Science Community. [in:] ASAE International Meeting in Sacramento, CA, July 29–August 1, 2001, American Society of Agricultural Engineers, 2001, pp. 1–9.
What is Empirical Bayesian Kriging 3D? ESRI, 2020. https://pro.arcgis.com/en/proapp/latest/help/analysis/geostatistical-analyst/what-is-empirical-bayesian-kriging-3d-.htm [access: 11.06.2023].
Zhang Y., Ji W., Saurette D.D., Easher T.H., Li H., Shi Z., Adamchuk V.I., Biswas A.: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, vol. 366, 2020, 114253. https://doi.org/10.1016/j.geoderma.2020.114253.
Chen C., Hu K., Li H., Yun A., Li B.: Three-dimensional mapping of soil organic carbon by combining kriging method with profile depth function. PLoS ONE, vol. 10(6), 2015, e0129038. https://doi.org/10.1371/journal.pone.0129038.
Sukkuea A., Heednacram A.: Prediction on spatial elevation using improved kriging algorithms: An application in environmental management. Expert Systems with Applications, vol. 207, 2022, 117971. https://doi.org/10.1016/j.eswa.2022.117971.
Izady A., Abdalla O., Ahmadi T., Chen M.: An efficient methodology to design optimal groundwater level monitoring network in Al-Buraimi region, Oman. Arabian Journal of Geosciences, vol. 10(2), 2017, 26. https://doi.org/10.1007/s12517-016-2802-2.
Xu Y., Tong X., Stilla U.: Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Automation in Construction, vol. 126. 2021, 103675. https://doi.org/10.1016/j.autcon.2021.103675.
Saglam A., Makineci H.B., Baykan N.A., Baykan Ö.K.: Boundary constrained voxel segmentation for 3D point clouds using local geometric differences. Expert Systems with Applications, vol. 157, 2020, 113439. https://doi.org/10.1016/j.eswa.2020.113439.
Wu H., Zhu Q., Guo Y., Zheng W., Zhang L., Wang Q., Zhou R., Ding Y., Wang W., Pirasteh S., Liu M.: Multi-level voxel representations for digital twin models of tunnel geological environment. International Journal of Applied Earth Observation and Geoinformation, vol. 112, 2022, 102887. https://doi.org/10.1016/j.jag.2022.102887.
Li J., Liu P., Wang X., Cui H., Ma Y.: 3D geological implicit modeling method of regular voxel splitting based on layered interpolation data. Scientific Reports, vol. 12(1), 2022, 13840. https://doi.org/10.1038/s41598-022-17231-x.
Hood R.A.: Accuracy of calculation of road traffic noise. Applied Acoustics, vol. 21(2), 1987 pp. 139–146. https://doi.org/10.1016/0003-682X(87)90006-5.
ISO 9613-2:1996: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation.
Attenborough K., Bashir I., Taherzadeh S.: Exploiting ground effects for surface transport noise abatement. Noise Mapping, vol. 3(1), 2016, pp. 1–25. https://doi.org/10.1515/noise-2016-0001.