Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Morphodynamic Cartography Visualization of Wulan River Estuary Systems from Space to Numerical Approach Based on Multi-Season Analysis
Corresponding Author(s) : Nurul Khakhim
Geomatics and Environmental Engineering,
Vol. 18 No. 5 (2024): Geomatics and Environmental Engineering
Abstract
This research aims to investigate the morphodynamics of the Wulan River estuary in Demak Regency using the integration of multispectral remote sensing images and numerical modeling. In this study, PlanetScope for a manualvisual analysis of estuary morphodynamics and Sentinel-2 MSI Level 2A to obtain periodic total suspended solids (TSS) information for the east and west monsoon seasons. MIKE by DHI software used to develop hydrodynamic numerical modeling in order to characterize the current circulation and sediment transport model. Based on a marine cartography aspect, the obtained results illustrated that the climatological phenomenon of seasonal forcing plays a role in the development of the current circulation and indirectly influences the sediment transport. During the west season, the morphodynamics in the Wulan River estuary are much more massive and significant as compared to the east season. A projection of the deposition that results from the sediment transport is described in the bed-thickness change; this occurs in the western part of the Wulan River estuary during the east season, while the bed-thickness change occurs predominantly in the northern part during the west season (where there was previously a beach sandbar phenomenon). This was verified through multi-temporal satellite imagery that the deposition that occurs in the northern part of the Wulan River estuary during the west season is increasingly progressive and massive.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Barbier E.B., Hacker S.D., Kennedy C., Koch E.W., Stier A.C., Silliman B.R.: The value of estuarine and coastal ecosystem services. Ecological Monographs, vol. 81(2), 2011, pp. 169–193. https://doi.org/10.1890/10-1510.1.
- Athanasiou P., van Dongeren A., Giardino A., Vousdoukas M.I., Ranasinghe R., Kwadijk J.: Uncertainties in projections of sandy beach erosion due to sea level rise: An analysis at the European scale. Scientific Reports, vol. 10(1), 2020, 11895. https://doi.org/10.1038/s41598-020-68576-0.
- Hoguane A.M., Gammelsrød T., Mazzilli S., Antonio M.H., da Silva N.B.F.: The hydrodynamics of the Bons Sinais Estuary: The value of simple hydrodynamic tidal models in understanding circulation in estuaries of central Mozambique. Regional Studies in Marine Science, vol. 37, 2020, 101352. https://doi.org/10.1016/j.rsma.2020.101352.
- Setyani F.D.: Sediment transport study in estuary of Weriagar River, Kabupaten Teluk Bintuni, West Papua. Jurnal Teknologia, vol. 3(1), 2020, pp. 62–71. https://aperti.e-journal.id/teknologia/article/view/57.
- Potter I.C., Chuwen B.M., Hoeksema S.D., Elliott M.: The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuarine, Coastal and Shelf Science, vol. 87(3), 2010, pp. 497–500. https://doi.org/10.1016/j.ecss.2010.01.021.
- Eulie D.O., Walsh J.P., Corbett D.R., Mulligan R.P.: Temporal and spatial dynamics of estuarine shoreline change in the Albemarle-Pamlico estuarine system, North Carolina, USA. Estuaries and Coasts, vol. 40(3), 2016, pp. 741–757. https://doi.org/10.1007/s12237-016-0143-8.
- Mayerle R., Narayanan R., Etri T., Abd Wahab A.K.: A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Engineering, vol. 106, 2015, pp. 161–174. https://doi.org/10.1016/j.oceaneng.2015.06.025.
- Wibowo M., Hendriyono W., Rahman R.A., Susatijo G., Kongko W., Istiyanto D.C., Widagdo A.B., Nugroho S., Khoirunnisa H., Wiguna E.: Sediment transport modeling at Jelitik Estuary, Sungailiat – Bangka Regency for the design of sediment control structures. Journal of Physics: Conference Series, vol. 1625(1), 2020, 012042. https://doi.org/10.1088/1742-6596/1625/1/012042.
- Kjerfve B., Stevenson L.H., Proehl J.A., Chrzanowski T.H., Kitchens W.M.: Estimation of material fluxes in an estuarine cross section: A critical analysis of spatial measurement density and errors. Limnology and Oceanography, vol. 26(2), 1981, pp. 325–335. https://doi.org/10.4319/lo.1981.26.2.0325.
- Zhang R., Hong B., Zhu L., Gong W., Zhang H.: Responses of estuarine circulation to the morphological evolution in a convergent, microtidal estuary. Ocean Science, vol. 18(1), 2022, pp. 213–231. https://doi.org/10.5194/os-18-213-2022.
- Temiz F., Durduran S.S.: Monitoring coastline change using remote sensing and GIS technology: A case study of Acigöl Lake, Turkey. IOP Conference Series: Earth and Environmental Science, vol. 44(4), 2016. https://doi.org/10.1088/1755-1315/44/4/042033.
- Boothroyd R.J., Williams R.D., Hoey T.B., Barrett B., Prasojo O.A.: Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water, vol. 8(1), 2021, e21496. https://doi.org/10.1002/wat2.1496.
- Zheng G., Wang Y., Zhao C., Dai W., Kattel G.R., Zhou D.: Quantitative analysis of tidal creek evolution and vegetation variation in silting muddy flats on the Yellow Sea. Remote Sensing, vol. 15(21), 2023, 5107. https://doi.org/10.3390/rs15215107.
- Li F., Dyt C., Griffiths C.: A coastal morphodynamic model for cross-shore sediment transport. WIT Transactions on the Built Environment, vol. 70, 2003, pp. 335–344.
- Colina Alonso A., van Maren D.S., van Weerdenburg R.J.A., Huismans Y., Wang Z.B.: Morphodynamic modeling of tidal basins: The role of sand-mud interaction. Journal of Geophysical Research: Earth Surface, vol. 128(9), 2023, e2023JF007391. https://doi.org/10.1029/2023JF007391.
- Clare M.C.A., Percival J.R., Angeloudis A., Cotter C.J., Piggott M.D.: Hydromorphodynamics 2D modelling using a discontinuous Galerkin discretisation. Computers & Geosciences, vol. 146, 2021, 104658. https://doi.org/10.1016/j.cageo.2020.104658.
- Nguyen V.T., Vu M.T., Zhang C.: Numerical investigation of hydrodynamics and cohesive sediment transport in Cua Lo and Cua Hoi estuaries, Vietnam. Journal of Marine Science and Engineering, vol. 9(11), 2021, 1258. https://doi.org/10.3390/jmse9111258.
- Yuan R., Zhang H., Qiu C., Wang Y., Guo X., Wang Y., Chen S.: Mapping morphodynamic variabilities of a meso-tidal flat in Shanghai based on satellitederived data. Remote Sensing, vol. 14(16), 2022, 4123. https://doi.org/10.3390/rs14164123.
- Febrianto S., Latifah N.: Pemetaan pola sebaran total suspended solid (TSS) di perairan teluk Semarang Menggunakan citra satelit Landsat 7 ETM dan Landsat 8. Jurnal Harpodon Borneo, vol. 10(1), 2017, pp. 56–60.
- Jiyah J., Sudarsono B., Sukmono A.: Studi distribusi total suspended solid (TSS) di perairan pantai kabupaten Demak menggunakan citra Landsat. Jurnal Geodesi Undip, vol. 6(1), 2017, pp. 41–47. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/15033 [access: 12.12.2023].
- Wei X., Cai S., Zhan W.: Impact of anthropogenic activities on morphological and deposition flux changes in the Pearl River Estuary, China. Scientific Reports, vol. 11(1), 2021, 16643. https://doi.org/10.1038/s41598-021-96183-0.
- Benincasa M., Falcini F., Adduce C., Santoleri R., Sannino G.: Remote sensing and coastal morphodynamic modelling. [in:] 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 Oct. 2018, pp. 1–6, IEEE, Piscataway 2018. https://doi.org/10.1109/MetroSea.2018.8657909.
- Ramadhani Y.H., Susanti R.: Dynamics land cover changes of Wulan Delta in 2003–2017 approach by remote sensing technology. IOP Conference Series: Earth and Environmental Science, vol. 561(1), 2020, 012042. https://doi.org/10.1088/1755-1315/561/1/012042.
- Fadlillah L.N., Sunarto, Widyastuti M., Marfai M.A.: The impact of human activities in the Wulan Delta Estuary, Indonesia. IOP Conference Series: Earth and Environmental Science, vol. 148(1), 2018, 012032. https://doi.org/10.1088/1755-1315/148/1/012032.
- Atmojo H.T., Wicaksana H.I., Rizal A., Cibaj I., Nugroho H., Ralanarko D.: 3D modelling of Longshore Bar deposit in modern fluvial dominated delta: Case study of Wulan Delta, Demak, Central Java Province. [in:] AAPG Datapages/Search and Discovery, GEO-2016, 12th Middle East Geosciences Conference & Exhibition, Manama, Bahrain, March 7–10, 2016, AAPG, Tulsa 2016, pp. 7–10.
- Muskananfola M.R., Febrianto S., Ayuningrum D.: Hydrodynamic characteristics and sediment distribution patterns in Wulan Delta Estuary, Demak, Indonesia. Makara Journal Technology, vol. 27(1), 2023, pp. 11–16. https://doi.org/10.7454/mst.v27i1.1615.
- Wirasatriya A., Maslukah L., Indrayanti E., Yusuf M., Milenia A.P., Adam A.A., Helmi M.: Seasonal variability of total suspended sediment off the Banjir Kanal Barat River, Semarang, Indonesia estimated from Sentinel-2 images. Regional Studies in Marine Science, vol. 57, 2023, 102735. https://doi.org/10.1016/j.rsma.2022.102735.
- Laili N., Arafah F., Jaelani L.M., Subehi L., Pamungkas A., Koenhardono E.S., Sulisetyono A.: Development of water quality parameter retrieval algorithms for estimating total suspended solids and chlorophyll-a concentration using Landsat-8 imagery at Poteran Island water. The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-2/W2, 2015, pp. 55–62. https://doi.org/10.5194/isprsannals-II-2-W2-55-2015.
- Zhao J., Zhang F., Chen S., Wang C., Chen J., Zhou H., Xue Y.: Remote sensing evaluation of total suspended solids dynamic with Markov model: A case study of Inland Reservoir across administrative boundary in South China. Sensors, vol. 20(23), 2020, 6991. https://doi.org/10.3390/s20236911.
- Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R.: Remote sensing of environment Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, vol. 202, 2017, pp. 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
- Amani M., Ghorbanian A., Ahmadi S.A., Kakooei M., Moghimi A., Mirmazloumi S.M., Moghaddam S.H.A., Mahdavi S., Ghahremanloo M., Parsian S., Wu Q., Brisco B.: Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052.
- Kanza R., Ahmada A., Darsono S., Atmodjo P.S.: Pengendalian banjir Sungai Wulan, Demak, Jawa Tengah. Jurnal Karya Teknik Sipil, vol. 6(4), 2017, pp. 300–308. https://ejournal3.undip.ac.id/index.php/jkts/article/view/18719 [access: 12.12.2023].
- MIKE 21/3 Coupled Model FM: User Guide. DHI, 2020. https://manuals.mikepoweredbydhi.help/2020/MIKE_3.htm [access: 12.12.2023].
- Smagorinsky J.: General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Review, vol. 91(3), 1963, pp. 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
- Badan Informasi Geospasial [Geospatial Information Agency]: Batimetri Nasional (BATNAS). 2024. https://tanahair.indonesia.go.id/portal-web/login?page=/unduh/batnas [access: 12.12.2023].
- MIKE 21 & MIKE 3 Flow Model FM, Mud Transport Module Scientific Documentation. DHI, 2020. https://manuals.mikepoweredbydhi.help/2020/MIKE_3. htm [access: 12.12.2023].
References
Barbier E.B., Hacker S.D., Kennedy C., Koch E.W., Stier A.C., Silliman B.R.: The value of estuarine and coastal ecosystem services. Ecological Monographs, vol. 81(2), 2011, pp. 169–193. https://doi.org/10.1890/10-1510.1.
Athanasiou P., van Dongeren A., Giardino A., Vousdoukas M.I., Ranasinghe R., Kwadijk J.: Uncertainties in projections of sandy beach erosion due to sea level rise: An analysis at the European scale. Scientific Reports, vol. 10(1), 2020, 11895. https://doi.org/10.1038/s41598-020-68576-0.
Hoguane A.M., Gammelsrød T., Mazzilli S., Antonio M.H., da Silva N.B.F.: The hydrodynamics of the Bons Sinais Estuary: The value of simple hydrodynamic tidal models in understanding circulation in estuaries of central Mozambique. Regional Studies in Marine Science, vol. 37, 2020, 101352. https://doi.org/10.1016/j.rsma.2020.101352.
Setyani F.D.: Sediment transport study in estuary of Weriagar River, Kabupaten Teluk Bintuni, West Papua. Jurnal Teknologia, vol. 3(1), 2020, pp. 62–71. https://aperti.e-journal.id/teknologia/article/view/57.
Potter I.C., Chuwen B.M., Hoeksema S.D., Elliott M.: The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuarine, Coastal and Shelf Science, vol. 87(3), 2010, pp. 497–500. https://doi.org/10.1016/j.ecss.2010.01.021.
Eulie D.O., Walsh J.P., Corbett D.R., Mulligan R.P.: Temporal and spatial dynamics of estuarine shoreline change in the Albemarle-Pamlico estuarine system, North Carolina, USA. Estuaries and Coasts, vol. 40(3), 2016, pp. 741–757. https://doi.org/10.1007/s12237-016-0143-8.
Mayerle R., Narayanan R., Etri T., Abd Wahab A.K.: A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Engineering, vol. 106, 2015, pp. 161–174. https://doi.org/10.1016/j.oceaneng.2015.06.025.
Wibowo M., Hendriyono W., Rahman R.A., Susatijo G., Kongko W., Istiyanto D.C., Widagdo A.B., Nugroho S., Khoirunnisa H., Wiguna E.: Sediment transport modeling at Jelitik Estuary, Sungailiat – Bangka Regency for the design of sediment control structures. Journal of Physics: Conference Series, vol. 1625(1), 2020, 012042. https://doi.org/10.1088/1742-6596/1625/1/012042.
Kjerfve B., Stevenson L.H., Proehl J.A., Chrzanowski T.H., Kitchens W.M.: Estimation of material fluxes in an estuarine cross section: A critical analysis of spatial measurement density and errors. Limnology and Oceanography, vol. 26(2), 1981, pp. 325–335. https://doi.org/10.4319/lo.1981.26.2.0325.
Zhang R., Hong B., Zhu L., Gong W., Zhang H.: Responses of estuarine circulation to the morphological evolution in a convergent, microtidal estuary. Ocean Science, vol. 18(1), 2022, pp. 213–231. https://doi.org/10.5194/os-18-213-2022.
Temiz F., Durduran S.S.: Monitoring coastline change using remote sensing and GIS technology: A case study of Acigöl Lake, Turkey. IOP Conference Series: Earth and Environmental Science, vol. 44(4), 2016. https://doi.org/10.1088/1755-1315/44/4/042033.
Boothroyd R.J., Williams R.D., Hoey T.B., Barrett B., Prasojo O.A.: Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water, vol. 8(1), 2021, e21496. https://doi.org/10.1002/wat2.1496.
Zheng G., Wang Y., Zhao C., Dai W., Kattel G.R., Zhou D.: Quantitative analysis of tidal creek evolution and vegetation variation in silting muddy flats on the Yellow Sea. Remote Sensing, vol. 15(21), 2023, 5107. https://doi.org/10.3390/rs15215107.
Li F., Dyt C., Griffiths C.: A coastal morphodynamic model for cross-shore sediment transport. WIT Transactions on the Built Environment, vol. 70, 2003, pp. 335–344.
Colina Alonso A., van Maren D.S., van Weerdenburg R.J.A., Huismans Y., Wang Z.B.: Morphodynamic modeling of tidal basins: The role of sand-mud interaction. Journal of Geophysical Research: Earth Surface, vol. 128(9), 2023, e2023JF007391. https://doi.org/10.1029/2023JF007391.
Clare M.C.A., Percival J.R., Angeloudis A., Cotter C.J., Piggott M.D.: Hydromorphodynamics 2D modelling using a discontinuous Galerkin discretisation. Computers & Geosciences, vol. 146, 2021, 104658. https://doi.org/10.1016/j.cageo.2020.104658.
Nguyen V.T., Vu M.T., Zhang C.: Numerical investigation of hydrodynamics and cohesive sediment transport in Cua Lo and Cua Hoi estuaries, Vietnam. Journal of Marine Science and Engineering, vol. 9(11), 2021, 1258. https://doi.org/10.3390/jmse9111258.
Yuan R., Zhang H., Qiu C., Wang Y., Guo X., Wang Y., Chen S.: Mapping morphodynamic variabilities of a meso-tidal flat in Shanghai based on satellitederived data. Remote Sensing, vol. 14(16), 2022, 4123. https://doi.org/10.3390/rs14164123.
Febrianto S., Latifah N.: Pemetaan pola sebaran total suspended solid (TSS) di perairan teluk Semarang Menggunakan citra satelit Landsat 7 ETM dan Landsat 8. Jurnal Harpodon Borneo, vol. 10(1), 2017, pp. 56–60.
Jiyah J., Sudarsono B., Sukmono A.: Studi distribusi total suspended solid (TSS) di perairan pantai kabupaten Demak menggunakan citra Landsat. Jurnal Geodesi Undip, vol. 6(1), 2017, pp. 41–47. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/15033 [access: 12.12.2023].
Wei X., Cai S., Zhan W.: Impact of anthropogenic activities on morphological and deposition flux changes in the Pearl River Estuary, China. Scientific Reports, vol. 11(1), 2021, 16643. https://doi.org/10.1038/s41598-021-96183-0.
Benincasa M., Falcini F., Adduce C., Santoleri R., Sannino G.: Remote sensing and coastal morphodynamic modelling. [in:] 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 Oct. 2018, pp. 1–6, IEEE, Piscataway 2018. https://doi.org/10.1109/MetroSea.2018.8657909.
Ramadhani Y.H., Susanti R.: Dynamics land cover changes of Wulan Delta in 2003–2017 approach by remote sensing technology. IOP Conference Series: Earth and Environmental Science, vol. 561(1), 2020, 012042. https://doi.org/10.1088/1755-1315/561/1/012042.
Fadlillah L.N., Sunarto, Widyastuti M., Marfai M.A.: The impact of human activities in the Wulan Delta Estuary, Indonesia. IOP Conference Series: Earth and Environmental Science, vol. 148(1), 2018, 012032. https://doi.org/10.1088/1755-1315/148/1/012032.
Atmojo H.T., Wicaksana H.I., Rizal A., Cibaj I., Nugroho H., Ralanarko D.: 3D modelling of Longshore Bar deposit in modern fluvial dominated delta: Case study of Wulan Delta, Demak, Central Java Province. [in:] AAPG Datapages/Search and Discovery, GEO-2016, 12th Middle East Geosciences Conference & Exhibition, Manama, Bahrain, March 7–10, 2016, AAPG, Tulsa 2016, pp. 7–10.
Muskananfola M.R., Febrianto S., Ayuningrum D.: Hydrodynamic characteristics and sediment distribution patterns in Wulan Delta Estuary, Demak, Indonesia. Makara Journal Technology, vol. 27(1), 2023, pp. 11–16. https://doi.org/10.7454/mst.v27i1.1615.
Wirasatriya A., Maslukah L., Indrayanti E., Yusuf M., Milenia A.P., Adam A.A., Helmi M.: Seasonal variability of total suspended sediment off the Banjir Kanal Barat River, Semarang, Indonesia estimated from Sentinel-2 images. Regional Studies in Marine Science, vol. 57, 2023, 102735. https://doi.org/10.1016/j.rsma.2022.102735.
Laili N., Arafah F., Jaelani L.M., Subehi L., Pamungkas A., Koenhardono E.S., Sulisetyono A.: Development of water quality parameter retrieval algorithms for estimating total suspended solids and chlorophyll-a concentration using Landsat-8 imagery at Poteran Island water. The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-2/W2, 2015, pp. 55–62. https://doi.org/10.5194/isprsannals-II-2-W2-55-2015.
Zhao J., Zhang F., Chen S., Wang C., Chen J., Zhou H., Xue Y.: Remote sensing evaluation of total suspended solids dynamic with Markov model: A case study of Inland Reservoir across administrative boundary in South China. Sensors, vol. 20(23), 2020, 6991. https://doi.org/10.3390/s20236911.
Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R.: Remote sensing of environment Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, vol. 202, 2017, pp. 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Amani M., Ghorbanian A., Ahmadi S.A., Kakooei M., Moghimi A., Mirmazloumi S.M., Moghaddam S.H.A., Mahdavi S., Ghahremanloo M., Parsian S., Wu Q., Brisco B.: Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052.
Kanza R., Ahmada A., Darsono S., Atmodjo P.S.: Pengendalian banjir Sungai Wulan, Demak, Jawa Tengah. Jurnal Karya Teknik Sipil, vol. 6(4), 2017, pp. 300–308. https://ejournal3.undip.ac.id/index.php/jkts/article/view/18719 [access: 12.12.2023].
MIKE 21/3 Coupled Model FM: User Guide. DHI, 2020. https://manuals.mikepoweredbydhi.help/2020/MIKE_3.htm [access: 12.12.2023].
Smagorinsky J.: General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Review, vol. 91(3), 1963, pp. 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
Badan Informasi Geospasial [Geospatial Information Agency]: Batimetri Nasional (BATNAS). 2024. https://tanahair.indonesia.go.id/portal-web/login?page=/unduh/batnas [access: 12.12.2023].
MIKE 21 & MIKE 3 Flow Model FM, Mud Transport Module Scientific Documentation. DHI, 2020. https://manuals.mikepoweredbydhi.help/2020/MIKE_3. htm [access: 12.12.2023].