Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Application of Anaerobic-Aerobic Combined Bioreactor Efficiency in COD Removal
Corresponding Author(s) : Seyyed Mehdi Borghei
Geomatics and Environmental Engineering,
Vol. 17 No. 4 (2023): Geomatics and Environmental Engineering
Abstract
Over the past few decades, anaerobic-aerobic wastewater treatment systems have been widely used in industrial and municipal wastewater treatment. This study was conducted to examine the effects of combined anaerobic-aerobic bioreactors in the removal of chemical oxygen demands (COD) while reducing phosphate concentrations in synthetic wastewater. In this project, a bioreactor with the dimensions of 10 cm × 10 cm × 80 cm with respective Kaldnes packing ratios of 90 and 30% for the anaerobic and aerobic sections was designed. A combined anaerobic-aerobic reactor’s structure made changing hydraulic retention times only possible by adjusting the volume of its aerobic and anaerobic sections. In the first case, the anaerobic and aerobic sections of the reactor occupied 30 and 50 cm of its height, respectively. The height of the anaerobic section decreases to 12.5 cm in the second case. In aerobic and anaerobic sections, pH was within a neutral range, temperature was 37°C. MLSS (mixed liquor suspended solids) was 1220 and 1030 mg/L, and attached growth was 743 and
1190 mg/L respectively. In order to evaluate COD in the wastewater, three different initial phosphorus concentrations were tested: 12.8, 32.0 and 44.8 mg/L, as well as four COD: 500, 1000, 1200 and 1400 mg/L. Considering the results, COD removal is greater than 80% when the valve 2 is in the anaerobic section outlet regardless of the concentration of phosphate. In this case, the best result is for inlet COD of 500, where the reactor can eliminate more than 90%. When the COD concentration reaches 1000 to 1400 ppm, the reactor’s COD removal efficiency declines to 60%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Skouteris G., Hermosilla D., López P., Negro C., Blanco Á.: Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, vol. 198, 2012, pp. 138–148. https://doi.org/10.1016/j.cej.2012.05.070.
- Baek S.H., Pagilla K.R.: Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment. Water Environment Research, vol. 78(2), 2006, pp. 133–140. https://doi.org/10.2175/106143005X89599.
- Zhang C., Guisasola A., Baeza J.A.: Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system. Water Research, vol. 190, 2021, 116703. https://doi.org/10.1016/j.watres.2020.116703.
- Franca R.D.G, Pinheiro H.M., van Loosdrecht M.C.M., Lourenço N.D.: Stability of aerobic granules during long-term bioreactor operation. Biotechnology Advances, vol. 36(1), 2018, pp. 228–246. https://doi.org/10.1016/j.biotechadv.2017.11.005.
- Jaibiba P., Naga Vignesh S., Hariharan S.: Working principle of typical bioreactors. [in:] Singh L., Yousuf A., Mahapatra D.M. (eds.), Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions, Elsevier, Amsterdam 2020, pp. 145–173. https://doi.org/10.1016/B978-0-12-821264-6.00010-3.
- Wang L.K., Hung Y.-T., Lo H.H., Yapijakis C. (eds.): Waste Treatment in the Food Processing Industry. CRC Press, Boca Raton 2005.
- Mazhar M.A., Khan N.A., Khan A.H., Ahmed S., Siddiqui A.A., Husain A., Rahisuddin et al.: Upgrading combined anaerobic-aerobic UASB-FPU to UASB-DHS system: Cost comparison and performance perspective for developing countries. Journal of Cleaner Production, vol. 284, 2021, 124723. https://doi.org/10.1016/j.jclepro.2020.124723.
- Chan Y.J., Chong M.F., Law C.L., Hassell D.G.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, vol. 155(1–2), 2009, pp. 1–18. https://doi.org/10.1016/j.cej.2009.06.041.
- Gonzalez-Tineo P.A., Durán-Hinojosa U., Delgadillo-Mirquez L.R., Meza-Escalante E.R., Gortáres-Moroyoqui P., Ulloa-Mercado R.G., Serrano-Palacios D.: Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater. Journal of Water Process Engineering, vol. 34, 2020, 101164. https://doi.org/10.1016/j.jwpe.2020.101164.
- Ergüder T.H., Demirer G.N.: Low-strength wastewater treatment with combined granular anaerobic and suspended aerobic cultures in upflow sludge blanket reactors. Journal of Environmental Engineering, vol. 134(4), 2008, pp. 295–303. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:4(295).
- Sikosana M.L., Sikhwivhilu K., Moutloali R., Madyira D.M.: Municipal wastewater treatment technologies: A review. Procedia Manufacturing, vol. 35, 2019, pp. 1018–1024. https://doi.org/10.1016/j.promfg.2019.06.051.
- Lazarova V., Manem J.: Advances in biofilm aerobic reactors ensuring effective biofilm activity control. Water Science and Technology, vol. 29(10–11), 1994, pp. 319–328. https://doi.org/10.2166/wst.1994.0775.
- di Biase A., Kowalski M.S., Devlin T.R., Oleszkiewicz J.A.: Moving bed biofilm reactor technology in municipal wastewater treatment: A review. Journal of Environmental Management, vol. 247, 2019. pp. 849–866. https://doi.org/10.1016/j.jenvman.2019.06.053.
- Tartakovsky B., Manuel M.-F., Guiot S.: Degradation of trichloroethylene in a coupled anaerobic–aerobic bioreactor: modeling and experiment. Biochemical Engineering Journal, vol. 26(1), 2005, pp. 72–81. https://doi.org/10.1016/j.bej.2005.06.007.
- Ozgun H., Dereli R.K., Ersahin M.E., Kinaci C., Spanjers H., van Lier J.B.: A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, vol. 118, 2013, pp. 89–104. https://doi.org/10.1016/j.seppur.2013.06.036.
- von Sperling M., Freire V., de Lemos Chernicharo C.A.: Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science and Technology, vol. 43(11), 2001, pp. 323–328. https://doi.org/10.2166/wst.2001.0698.
- La Motta E.J., Silva E., Bustillos A., Padrón H., Luque J.: Combined anaerobic/aerobic secondary municipal wastewater treatment: pilot-plant demonstration of the UASB/aerobic solids contact system. Journal of Environmental Engineering, vol. 133(4), 2007, pp. 397–403. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(397).
- Moosavi G., Mesdaghinia A.R., Naddafi K., Mahvi A.H., Nouri J.: Feasibility of development and application of an up-flow anaerobic/aerobic fixed bed combined reactor to treat high strength wastewaters. Journal of Applied Sciences, vol. 5(1), 2005, pp. 169–171. https://doi.org/10.3923/jas.2005.169.171.
- Lew B., Tarre S., Beliavski M., Dosoretz C., Green M.: Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination, vol. 243(1–3), 2009, pp. 251–257. https://doi.org/10.1016/j.desal.2008.04.027.
- Vyrides I., Stuckey D.: Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): effects of activated carbon addition and biogas-sparging time. Water Research, vol. 43(4), 2009, pp. 933–942. https://doi.org/10.1016/j.watres.2008.11.054.
- Callado N., Foresti E.: Removal of organic carbon, nitrogen and phosphorus in sequential batch reactors integrating the aerobic/anaerobic processes. Water Science and Technology, vol. 44(4), 2001, pp. 263–270. https://doi.org/10.2166/wst.2001.0232.
- Guimarães P., Melo H.N., Cavalcanti P.F., van Haandel A.C.: Anaerobic-aerobic sewage treatment using the combination UASB-SBR activated sludge. Journal of Environmental Science and Health. Part A, vol. 38(11), 2003, pp. 2633–2641. https://doi.org/10.1081/ese-120024452.
- Jun H.B., Park S.M., Park J.K., Lee S.-H.: Equalization characteristics of an upflow sludge blanket–aerated biofilter (USB-AF) system. Water Science and Technology, vol. 51(10), 2005, pp. 301–310. https://doi.org/10.2166/wst.2005.0379.
- Tawfik A. et al.: Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor. Water Research, vol. 36(1), 2002, pp. 147–155. https://doi.org/10.1016/S0043-1354(01)00185-3.
- Fdez-Polanco F., Real F., Garcia P.: Behaviour of an anaerobic/aerobic pilot scale fluidized bed for the simultaneous removal of carbon and nitrogen. Water Science and Technology, vol. 29(10–11), 1994, pp. 339–346. https://doi.org/10.2166/wst.1994.0777.
- Kuyukina M.S., Krivoruchko A.V., Ivshina I.B.: Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, vol. 10(3), 2020, 831. https://doi.org/10.3390/app10030831.
- Torres P., Foresti E.: Domestic sewage treatment in a pilot system composed of UASB and SBR reactors. Water Science and Technology, vol. 44(4), 2001, pp. 247–253. https://doi.org/10.2166/wst.2001.0230.
References
Skouteris G., Hermosilla D., López P., Negro C., Blanco Á.: Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, vol. 198, 2012, pp. 138–148. https://doi.org/10.1016/j.cej.2012.05.070.
Baek S.H., Pagilla K.R.: Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment. Water Environment Research, vol. 78(2), 2006, pp. 133–140. https://doi.org/10.2175/106143005X89599.
Zhang C., Guisasola A., Baeza J.A.: Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system. Water Research, vol. 190, 2021, 116703. https://doi.org/10.1016/j.watres.2020.116703.
Franca R.D.G, Pinheiro H.M., van Loosdrecht M.C.M., Lourenço N.D.: Stability of aerobic granules during long-term bioreactor operation. Biotechnology Advances, vol. 36(1), 2018, pp. 228–246. https://doi.org/10.1016/j.biotechadv.2017.11.005.
Jaibiba P., Naga Vignesh S., Hariharan S.: Working principle of typical bioreactors. [in:] Singh L., Yousuf A., Mahapatra D.M. (eds.), Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions, Elsevier, Amsterdam 2020, pp. 145–173. https://doi.org/10.1016/B978-0-12-821264-6.00010-3.
Wang L.K., Hung Y.-T., Lo H.H., Yapijakis C. (eds.): Waste Treatment in the Food Processing Industry. CRC Press, Boca Raton 2005.
Mazhar M.A., Khan N.A., Khan A.H., Ahmed S., Siddiqui A.A., Husain A., Rahisuddin et al.: Upgrading combined anaerobic-aerobic UASB-FPU to UASB-DHS system: Cost comparison and performance perspective for developing countries. Journal of Cleaner Production, vol. 284, 2021, 124723. https://doi.org/10.1016/j.jclepro.2020.124723.
Chan Y.J., Chong M.F., Law C.L., Hassell D.G.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, vol. 155(1–2), 2009, pp. 1–18. https://doi.org/10.1016/j.cej.2009.06.041.
Gonzalez-Tineo P.A., Durán-Hinojosa U., Delgadillo-Mirquez L.R., Meza-Escalante E.R., Gortáres-Moroyoqui P., Ulloa-Mercado R.G., Serrano-Palacios D.: Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater. Journal of Water Process Engineering, vol. 34, 2020, 101164. https://doi.org/10.1016/j.jwpe.2020.101164.
Ergüder T.H., Demirer G.N.: Low-strength wastewater treatment with combined granular anaerobic and suspended aerobic cultures in upflow sludge blanket reactors. Journal of Environmental Engineering, vol. 134(4), 2008, pp. 295–303. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:4(295).
Sikosana M.L., Sikhwivhilu K., Moutloali R., Madyira D.M.: Municipal wastewater treatment technologies: A review. Procedia Manufacturing, vol. 35, 2019, pp. 1018–1024. https://doi.org/10.1016/j.promfg.2019.06.051.
Lazarova V., Manem J.: Advances in biofilm aerobic reactors ensuring effective biofilm activity control. Water Science and Technology, vol. 29(10–11), 1994, pp. 319–328. https://doi.org/10.2166/wst.1994.0775.
di Biase A., Kowalski M.S., Devlin T.R., Oleszkiewicz J.A.: Moving bed biofilm reactor technology in municipal wastewater treatment: A review. Journal of Environmental Management, vol. 247, 2019. pp. 849–866. https://doi.org/10.1016/j.jenvman.2019.06.053.
Tartakovsky B., Manuel M.-F., Guiot S.: Degradation of trichloroethylene in a coupled anaerobic–aerobic bioreactor: modeling and experiment. Biochemical Engineering Journal, vol. 26(1), 2005, pp. 72–81. https://doi.org/10.1016/j.bej.2005.06.007.
Ozgun H., Dereli R.K., Ersahin M.E., Kinaci C., Spanjers H., van Lier J.B.: A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, vol. 118, 2013, pp. 89–104. https://doi.org/10.1016/j.seppur.2013.06.036.
von Sperling M., Freire V., de Lemos Chernicharo C.A.: Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science and Technology, vol. 43(11), 2001, pp. 323–328. https://doi.org/10.2166/wst.2001.0698.
La Motta E.J., Silva E., Bustillos A., Padrón H., Luque J.: Combined anaerobic/aerobic secondary municipal wastewater treatment: pilot-plant demonstration of the UASB/aerobic solids contact system. Journal of Environmental Engineering, vol. 133(4), 2007, pp. 397–403. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(397).
Moosavi G., Mesdaghinia A.R., Naddafi K., Mahvi A.H., Nouri J.: Feasibility of development and application of an up-flow anaerobic/aerobic fixed bed combined reactor to treat high strength wastewaters. Journal of Applied Sciences, vol. 5(1), 2005, pp. 169–171. https://doi.org/10.3923/jas.2005.169.171.
Lew B., Tarre S., Beliavski M., Dosoretz C., Green M.: Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination, vol. 243(1–3), 2009, pp. 251–257. https://doi.org/10.1016/j.desal.2008.04.027.
Vyrides I., Stuckey D.: Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): effects of activated carbon addition and biogas-sparging time. Water Research, vol. 43(4), 2009, pp. 933–942. https://doi.org/10.1016/j.watres.2008.11.054.
Callado N., Foresti E.: Removal of organic carbon, nitrogen and phosphorus in sequential batch reactors integrating the aerobic/anaerobic processes. Water Science and Technology, vol. 44(4), 2001, pp. 263–270. https://doi.org/10.2166/wst.2001.0232.
Guimarães P., Melo H.N., Cavalcanti P.F., van Haandel A.C.: Anaerobic-aerobic sewage treatment using the combination UASB-SBR activated sludge. Journal of Environmental Science and Health. Part A, vol. 38(11), 2003, pp. 2633–2641. https://doi.org/10.1081/ese-120024452.
Jun H.B., Park S.M., Park J.K., Lee S.-H.: Equalization characteristics of an upflow sludge blanket–aerated biofilter (USB-AF) system. Water Science and Technology, vol. 51(10), 2005, pp. 301–310. https://doi.org/10.2166/wst.2005.0379.
Tawfik A. et al.: Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor. Water Research, vol. 36(1), 2002, pp. 147–155. https://doi.org/10.1016/S0043-1354(01)00185-3.
Fdez-Polanco F., Real F., Garcia P.: Behaviour of an anaerobic/aerobic pilot scale fluidized bed for the simultaneous removal of carbon and nitrogen. Water Science and Technology, vol. 29(10–11), 1994, pp. 339–346. https://doi.org/10.2166/wst.1994.0777.
Kuyukina M.S., Krivoruchko A.V., Ivshina I.B.: Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, vol. 10(3), 2020, 831. https://doi.org/10.3390/app10030831.
Torres P., Foresti E.: Domestic sewage treatment in a pilot system composed of UASB and SBR reactors. Water Science and Technology, vol. 44(4), 2001, pp. 247–253. https://doi.org/10.2166/wst.2001.0230.