Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
Application of Anaerobic-Aerobic Combined Bioreactor in Phosphorus Removal
Corresponding Author(s) : Seyyed Mehdi Borghei
Geomatics and Environmental Engineering,
Vol. 17 No. 6 (2023): Geomatics and Environmental Engineering
Abstract
A two-stage anaerobic-aerobic sequencing reactor system was developed in order to enhance the removal of biological phosphorus in the sequencing of combined reactors. Combining both aerobic and anaerobic designs in one reactor improved the efficiency and reduced the construction and operating costs. The combination of an upflow anaerobic fixed bed (UAFB) and a floating activated sludge aerobic bioreactor was designed with respective Kaldnes packing ratios of 90 and 30% for the anaerobic and aerobic sections. The controlled parameters were pH levels within a neutral range, a temperature of 37°C, mixed liquor suspended solids (MLSS) of 1220 and 1030 mg/L for the aerobic and anaerobic sections, respectively, and an attached growth that was equal of 743 and 1190 mg/L for the aerobic and anaerobic sections, respectively. Tests were conducted for three different initial phosphorus concentrations (12.8, 32.0, and 44.8 mg/L), two different volumes for each section, and four chemical oxygen demands (CODs) (500, 1000, 1200, and 1400 mg/L). The results demonstrated that, generally, the phosphorus removal in the anaerobic section fell significantly by increasing the inlet COD, and the maximum removal occurred at COD = 500 mg/L. More than 90% of the phosphorus was removed in the aerobic section at COD = 500 mg/L. In other words, the best performance of the reactor was when the ratio of the COD : N : P = 100 : 5 : 2, composition of phosphorus in industrial wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Torit J., Siangdung W., Thiravetyan P.: Phosphorus removal from domestic wastewater by Echinodorus cordifolius L. Journal of Environmental Science and Health, Part A, vol. 47(5), 2012, pp. 794–800. https://doi.org/10.1080/10934529.2012.660114.
- Espiner É.R.: Interspecies sustainable development: Intersectional empathetic approaches to food and climate justice. University of Canterbury, 2019 [thesis].
- Schindler D.W.: Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, vol. 51(1, part 2), 2006, pp. 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356.
- Liu J., Deng S.Y., Qiu B., Shang Y., Tian J., Bashir A., Cheng X.: Comparison of pretreatment methods for phosphorus release from waste activated sludge. Chemical Engineering Journal, vol. 368, 2019, pp. 754–763. https://doi.org/10.1016/j.cej.2019.02.205.
- Pokhrel S., Milke M.W., Bello-Mendoza R., Buitrón G., Thiele J.: Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge. Waste Management, vol. 76, 2018, pp. 90–97. https://doi.org/10.1016/j.wasman.2018.03.008.
- Staal L.B., Petersen A.B., Jørgensen C.A., Nielsen U.G., Nielsen P.H., Reitzel K.: Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, vol. 157, 2019, pp. 346–355. https://doi.org/10.1016/j.watres.2019.03.065.
- Xie C., Tang J., Zhao J., Wu D., Xu X.: The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 102(3), 2011, pp. 2455–2461. https://doi.org/10.1016/j.biortech.2010.11.011.
- Hu Q., He L., Lan R., Feng C., Pei X.: Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review. Separation and Purification Technology, vol. 308, 2022, 122944. https://doi.org/10.1016/j.seppur.2022.122944.
- Li Y., Chen Y.F., Chen P., Min M., Zhou W., Martinez B., Zhu J., Ruan R.: Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, vol. 102(8), 2011, pp. 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091.
- Lin H., Gan J., Rajendran A., Reis C.E.R., Hu B.: Phosphorus removal and recovery from digestate after biogas production. [in:] Biernat K. (ed.), Biofuels – Status and Perspective, IntechOpen, 2015, pp. 517–546. https://doi.org/10.5772/60474.
- Sikosana M.L., Sikhwivhilu K., Moutloali R., Madyira D.M.: Municipal wastewater treatment technologies: A review. Procedia Manufacturing, vol. 35, 2019, pp. 1018–1024. https://doi.org/10.1016/j.promfg.2019.06.051.
- Mainardis M., Buttazzoni M., Goi D.J.B.: Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, vol. 7(2), 2020, 43. https://doi.org/10.3390/bioengineering7020043.
- Macomber J., Cicek N., Suidan M.T., Davel J., Ginestet Ph., Audic J.M.: Biological kinetic data evaluation of an activated sludge system coupled with an ultrafiltration membrane. Journal of Environmental Engineering, vol. 131(4), 2005, pp. 579–586. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:4(579).
- Seghezzo L., Zeeman G., van Lier J.B., Hamelers H.V.M., Lettinga G.: A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, vol. 65(3), 1998, pp. 175–190. https://doi.org/10.1016/S0960-8524(98)00046-7.
- Jaibiba P., Vignesh S.N., Hariharan S.: Working principle of typical bioreactors. [in:] Singh L., Abu Y., Mahapatra D.M. (eds.), Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions, Elsevier, 2020, pp. 145–173. https://doi.org/10.1016/B978-0-12-821264-6.00010-3.
- Sklyar V., Epov A., Gladchenko M., Danilovich D., Kalyuzhnyi S.: Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater. Applied Biochemistry and Biotechnology, vol. 109(1), 2003, pp. 253–262. https://doi.org/10.1385/abab:109:1-3:253.
- von Sperling M., Freire V.H., de Lemos Chernicharo C.A.: Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science & Technology, vol. 43(11), 2001, pp. 323–328. https://doi.org/10.2166/wst.2001.0698.
- Anijiofor S.C., Mohd Jamil N.A., Jabbar S., Sakyat S., Gomes C.: Aerobic and anaerobic sewage biodegradable processes: The gap analysis. International Journal of Research in Environmental Science, vol. 3(3), 2017, pp. 9–19. https://doi.org/10.20431/2454-9444.0303002.
- Liu J., Liu X., Gao L., Xu S., Chen X., Tian H., Kang X.: Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. Environmental Science and Pollution Research, vol. 27(15), 2020, pp. 18743–18756. https://doi.org/10.1007/s11356-020-08263-9.
- Chan Y.J., Chong M.F., Law C.L., Hassell D.G.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, vol. 155(1–2), 2009, pp. 1–18. https://doi.org/10.1016/j.cej.2009.06.041.
- Baker B.R., Mohamed R., Al-Gheethi A., Aziz H.A.: Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology, vol. 42(6), 2021, pp. 880–899. https://doi.org/10.1080/01932691.2020.1721007.
- Mahat S.B., Omar R., Idris A., Mustapa Kamal S.M., Mohd Idris A.I.: Dynamic membrane applications in anaerobic and aerobic digestion for industrial wastewater: A mini review. Food and Bioproducts Processing, vol. 112, 2018, pp. 150–168. https://doi.org/10.1016/J.FBP.2018.09.008.
- Perumal M., Karikalacholan S., Parimannan N., Arichandran J., Shanmuganathan K., Ravi R., Jayapandiyan S., Jayakumar S., Mohandas T.: Integrated anaerobic-aerobic processes for treatment of high strength wastewater: Consolidated application, new trends, perspectives, and challenges. [in:] Kumar V., Kumar M. (eds.), Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development, Elsevier, 2022, pp. 457–481. https://doi.org/10.1016/B978-0-323-91180-1.00012-0.
- Nielsen A.H., Vollertsen J., Jensen H.S., Madsen H.I., Hvitved-Jacobsen T.: Aerobic and anaerobic transformations of sulfide in a sewer system – field study and model simulations. Water Environment Research, vol. 80(1), 2008, pp. 16–25. https://doi.org/10.2175/106143007x184537.
- Moosavi G., Mesdaghinia A.R., Naddafi K., Mahvi A.H., Nouri J.: Feasibility of development and application of an up-flow anaerobic/aerobic fixed bed combined reactor to treat high strength wastewaters. Journal of Applied Sciences, vol. 5(1), 2005, pp. 169–171. https://doi.org/10.3923/jas.2005.169.171.
- Yudachev V., Lew B.: Trends and perspectives of anaerobic technologies in the face of stringent disposal standards. [in:] Tyagi V.K., Khan A.A., Jern Ng W., Khursheed A., Kazm A.A. (eds.), Post Treatments of Anaerobically Treated Effluents, IWA Publishing, London 2019, pp. 133–149. https://doi.org/10.2166/9781780409740_0133.
- Zheng Y., Cheng C., Zhou Z., Pang H., Chen L., Jiang L.-M.: Insight into the roles of packing carriers and ultrasonication in anaerobic side-stream reactor Application of coupled membrane bioreactors: Sludge reduction performance and mechanism. Water Research, vol. 155, 2019, pp. 310–319. https://doi.org/10.1016/j.watres.2019.02.039.
- Rocha-Meneses L., Zannerni R., Inayat A., Abdallah M., Shanableh A., Ghenai C., Kamil M., Kikas T.: Current progress in anaerobic digestion reactors and parameters optimization. Biomass Conversion and Biorefinery, 2022, pp. 1–24. https://doi.org/10.1007/s13399-021-02224-z.
- Acevedo B., Camiña C., Corona J.E., Borrás L., Barat R.: The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery. Chemical Engineering Journal, vol. 270, 2015, pp. 459–467. https://doi.org/10.1016/j.cej.2015.02.063.
- Wong P.Y., Cheng K.Y., Kaksonen A.H., Sutton D.C., Ginige M.P.: A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Water Research, vol. 47(17), 2013, pp. 6488–6495. https://doi.org/10.1016/j.watres.2013.08.023.
- Lv J., Yuan L.: Effects of chemical phosphate precipitation in the sidestream process on biological phosphorus removal at the anaerobic stage in an anaerobic-aerobic sequencing batch reactor. Desalination and Water Treatment, vol. 54(11), 2015, pp. 3011–3019. https://doi.org/10.1080/19443994.2014.904819.
- Yu X.-J., Tian W.-G., Deng Y., Cai Y.-Q., Wang Y.-E., Wang Z.-L., Li M., Ma J.: Nutrient removal and phosphorus recovery performance of an anaerobic side-stream extraction based enhanced biological phosphorus removal subjected to low dissolved oxygen. Journal of Water Process Engineering, vol. 42, 2021, 101861. https://doi.org/10.1016/j.jwpe.2020.101861.
- Zou H., Wang Y.: Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresource Technology, vol. 211, 2016, pp. 87–92. https://doi.org/10.1016/j.biortech.2016.03.073.
- Liu S., Daigger G.T., Liu B., Zhao W., Liu J.: Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times. Bioresource Technology, vol. 301, 2020, 122750. https://doi.org/10.1016/j.biortech.2020.122750.
- Brown P., Ong S.K., Lee Y.-W.: Influence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor. Desalination, vol. 270(1–3), 2011, pp. 227–232. https://doi.org/10.1016/j.desal.2010.12.001.
- Mahvi A., Nabizadeh R., Pishrafti M., Zarei T.: Evaluation of single stage USBF in removal of nitrogen and phosphorus from wastewater. European Journal of Scientific Research, vol. 23(2), 2008, pp. 204–211. https://sid.ir/paper/613943/en.
References
Torit J., Siangdung W., Thiravetyan P.: Phosphorus removal from domestic wastewater by Echinodorus cordifolius L. Journal of Environmental Science and Health, Part A, vol. 47(5), 2012, pp. 794–800. https://doi.org/10.1080/10934529.2012.660114.
Espiner É.R.: Interspecies sustainable development: Intersectional empathetic approaches to food and climate justice. University of Canterbury, 2019 [thesis].
Schindler D.W.: Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, vol. 51(1, part 2), 2006, pp. 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356.
Liu J., Deng S.Y., Qiu B., Shang Y., Tian J., Bashir A., Cheng X.: Comparison of pretreatment methods for phosphorus release from waste activated sludge. Chemical Engineering Journal, vol. 368, 2019, pp. 754–763. https://doi.org/10.1016/j.cej.2019.02.205.
Pokhrel S., Milke M.W., Bello-Mendoza R., Buitrón G., Thiele J.: Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge. Waste Management, vol. 76, 2018, pp. 90–97. https://doi.org/10.1016/j.wasman.2018.03.008.
Staal L.B., Petersen A.B., Jørgensen C.A., Nielsen U.G., Nielsen P.H., Reitzel K.: Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, vol. 157, 2019, pp. 346–355. https://doi.org/10.1016/j.watres.2019.03.065.
Xie C., Tang J., Zhao J., Wu D., Xu X.: The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 102(3), 2011, pp. 2455–2461. https://doi.org/10.1016/j.biortech.2010.11.011.
Hu Q., He L., Lan R., Feng C., Pei X.: Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review. Separation and Purification Technology, vol. 308, 2022, 122944. https://doi.org/10.1016/j.seppur.2022.122944.
Li Y., Chen Y.F., Chen P., Min M., Zhou W., Martinez B., Zhu J., Ruan R.: Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, vol. 102(8), 2011, pp. 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091.
Lin H., Gan J., Rajendran A., Reis C.E.R., Hu B.: Phosphorus removal and recovery from digestate after biogas production. [in:] Biernat K. (ed.), Biofuels – Status and Perspective, IntechOpen, 2015, pp. 517–546. https://doi.org/10.5772/60474.
Sikosana M.L., Sikhwivhilu K., Moutloali R., Madyira D.M.: Municipal wastewater treatment technologies: A review. Procedia Manufacturing, vol. 35, 2019, pp. 1018–1024. https://doi.org/10.1016/j.promfg.2019.06.051.
Mainardis M., Buttazzoni M., Goi D.J.B.: Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, vol. 7(2), 2020, 43. https://doi.org/10.3390/bioengineering7020043.
Macomber J., Cicek N., Suidan M.T., Davel J., Ginestet Ph., Audic J.M.: Biological kinetic data evaluation of an activated sludge system coupled with an ultrafiltration membrane. Journal of Environmental Engineering, vol. 131(4), 2005, pp. 579–586. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:4(579).
Seghezzo L., Zeeman G., van Lier J.B., Hamelers H.V.M., Lettinga G.: A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, vol. 65(3), 1998, pp. 175–190. https://doi.org/10.1016/S0960-8524(98)00046-7.
Jaibiba P., Vignesh S.N., Hariharan S.: Working principle of typical bioreactors. [in:] Singh L., Abu Y., Mahapatra D.M. (eds.), Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions, Elsevier, 2020, pp. 145–173. https://doi.org/10.1016/B978-0-12-821264-6.00010-3.
Sklyar V., Epov A., Gladchenko M., Danilovich D., Kalyuzhnyi S.: Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater. Applied Biochemistry and Biotechnology, vol. 109(1), 2003, pp. 253–262. https://doi.org/10.1385/abab:109:1-3:253.
von Sperling M., Freire V.H., de Lemos Chernicharo C.A.: Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science & Technology, vol. 43(11), 2001, pp. 323–328. https://doi.org/10.2166/wst.2001.0698.
Anijiofor S.C., Mohd Jamil N.A., Jabbar S., Sakyat S., Gomes C.: Aerobic and anaerobic sewage biodegradable processes: The gap analysis. International Journal of Research in Environmental Science, vol. 3(3), 2017, pp. 9–19. https://doi.org/10.20431/2454-9444.0303002.
Liu J., Liu X., Gao L., Xu S., Chen X., Tian H., Kang X.: Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. Environmental Science and Pollution Research, vol. 27(15), 2020, pp. 18743–18756. https://doi.org/10.1007/s11356-020-08263-9.
Chan Y.J., Chong M.F., Law C.L., Hassell D.G.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, vol. 155(1–2), 2009, pp. 1–18. https://doi.org/10.1016/j.cej.2009.06.041.
Baker B.R., Mohamed R., Al-Gheethi A., Aziz H.A.: Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology, vol. 42(6), 2021, pp. 880–899. https://doi.org/10.1080/01932691.2020.1721007.
Mahat S.B., Omar R., Idris A., Mustapa Kamal S.M., Mohd Idris A.I.: Dynamic membrane applications in anaerobic and aerobic digestion for industrial wastewater: A mini review. Food and Bioproducts Processing, vol. 112, 2018, pp. 150–168. https://doi.org/10.1016/J.FBP.2018.09.008.
Perumal M., Karikalacholan S., Parimannan N., Arichandran J., Shanmuganathan K., Ravi R., Jayapandiyan S., Jayakumar S., Mohandas T.: Integrated anaerobic-aerobic processes for treatment of high strength wastewater: Consolidated application, new trends, perspectives, and challenges. [in:] Kumar V., Kumar M. (eds.), Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development, Elsevier, 2022, pp. 457–481. https://doi.org/10.1016/B978-0-323-91180-1.00012-0.
Nielsen A.H., Vollertsen J., Jensen H.S., Madsen H.I., Hvitved-Jacobsen T.: Aerobic and anaerobic transformations of sulfide in a sewer system – field study and model simulations. Water Environment Research, vol. 80(1), 2008, pp. 16–25. https://doi.org/10.2175/106143007x184537.
Moosavi G., Mesdaghinia A.R., Naddafi K., Mahvi A.H., Nouri J.: Feasibility of development and application of an up-flow anaerobic/aerobic fixed bed combined reactor to treat high strength wastewaters. Journal of Applied Sciences, vol. 5(1), 2005, pp. 169–171. https://doi.org/10.3923/jas.2005.169.171.
Yudachev V., Lew B.: Trends and perspectives of anaerobic technologies in the face of stringent disposal standards. [in:] Tyagi V.K., Khan A.A., Jern Ng W., Khursheed A., Kazm A.A. (eds.), Post Treatments of Anaerobically Treated Effluents, IWA Publishing, London 2019, pp. 133–149. https://doi.org/10.2166/9781780409740_0133.
Zheng Y., Cheng C., Zhou Z., Pang H., Chen L., Jiang L.-M.: Insight into the roles of packing carriers and ultrasonication in anaerobic side-stream reactor Application of coupled membrane bioreactors: Sludge reduction performance and mechanism. Water Research, vol. 155, 2019, pp. 310–319. https://doi.org/10.1016/j.watres.2019.02.039.
Rocha-Meneses L., Zannerni R., Inayat A., Abdallah M., Shanableh A., Ghenai C., Kamil M., Kikas T.: Current progress in anaerobic digestion reactors and parameters optimization. Biomass Conversion and Biorefinery, 2022, pp. 1–24. https://doi.org/10.1007/s13399-021-02224-z.
Acevedo B., Camiña C., Corona J.E., Borrás L., Barat R.: The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery. Chemical Engineering Journal, vol. 270, 2015, pp. 459–467. https://doi.org/10.1016/j.cej.2015.02.063.
Wong P.Y., Cheng K.Y., Kaksonen A.H., Sutton D.C., Ginige M.P.: A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Water Research, vol. 47(17), 2013, pp. 6488–6495. https://doi.org/10.1016/j.watres.2013.08.023.
Lv J., Yuan L.: Effects of chemical phosphate precipitation in the sidestream process on biological phosphorus removal at the anaerobic stage in an anaerobic-aerobic sequencing batch reactor. Desalination and Water Treatment, vol. 54(11), 2015, pp. 3011–3019. https://doi.org/10.1080/19443994.2014.904819.
Yu X.-J., Tian W.-G., Deng Y., Cai Y.-Q., Wang Y.-E., Wang Z.-L., Li M., Ma J.: Nutrient removal and phosphorus recovery performance of an anaerobic side-stream extraction based enhanced biological phosphorus removal subjected to low dissolved oxygen. Journal of Water Process Engineering, vol. 42, 2021, 101861. https://doi.org/10.1016/j.jwpe.2020.101861.
Zou H., Wang Y.: Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresource Technology, vol. 211, 2016, pp. 87–92. https://doi.org/10.1016/j.biortech.2016.03.073.
Liu S., Daigger G.T., Liu B., Zhao W., Liu J.: Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times. Bioresource Technology, vol. 301, 2020, 122750. https://doi.org/10.1016/j.biortech.2020.122750.
Brown P., Ong S.K., Lee Y.-W.: Influence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor. Desalination, vol. 270(1–3), 2011, pp. 227–232. https://doi.org/10.1016/j.desal.2010.12.001.
Mahvi A., Nabizadeh R., Pishrafti M., Zarei T.: Evaluation of single stage USBF in removal of nitrogen and phosphorus from wastewater. European Journal of Scientific Research, vol. 23(2), 2008, pp. 204–211. https://sid.ir/paper/613943/en.